An inductive approach to generalized abundance using nef reduction

We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair $(X,B)$ if the nef dimension $n(K_X+B+L)=2$ and $K_X+B \ge 0$ or $n(K_X+B+...

Full description

Saved in:
Bibliographic Details
Main Author: Chaudhuri, Priyankur
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.420/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206281413066752
author Chaudhuri, Priyankur
author_facet Chaudhuri, Priyankur
author_sort Chaudhuri, Priyankur
collection DOAJ
description We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair $(X,B)$ if the nef dimension $n(K_X+B+L)=2$ and $K_X+B \ge 0$ or $n(K_X+B+L)=3$ and $\kappa (K_X+B)>0$.
format Article
id doaj-art-005ab9520641472d9616b447d7018595
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-005ab9520641472d9616b447d70185952025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G141742110.5802/crmath.42010.5802/crmath.420An inductive approach to generalized abundance using nef reductionChaudhuri, Priyankur0Department of Mathematics, University of Maryland, College Park, MD 20742, USAWe use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair $(X,B)$ if the nef dimension $n(K_X+B+L)=2$ and $K_X+B \ge 0$ or $n(K_X+B+L)=3$ and $\kappa (K_X+B)>0$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.420/
spellingShingle Chaudhuri, Priyankur
An inductive approach to generalized abundance using nef reduction
Comptes Rendus. Mathématique
title An inductive approach to generalized abundance using nef reduction
title_full An inductive approach to generalized abundance using nef reduction
title_fullStr An inductive approach to generalized abundance using nef reduction
title_full_unstemmed An inductive approach to generalized abundance using nef reduction
title_short An inductive approach to generalized abundance using nef reduction
title_sort inductive approach to generalized abundance using nef reduction
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.420/
work_keys_str_mv AT chaudhuripriyankur aninductiveapproachtogeneralizedabundanceusingnefreduction
AT chaudhuripriyankur inductiveapproachtogeneralizedabundanceusingnefreduction