Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere

In this note, we study non-uniqueness for minimizing harmonic maps from $B^3$ to $§^2$. We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small $W^{1,p}$-change for $p<2$. This strengthens a remark by the second-named au...

Full description

Saved in:
Bibliographic Details
Main Authors: Detaille, Antoine, Mazowiecka, Katarzyna
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.648/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this note, we study non-uniqueness for minimizing harmonic maps from $B^3$ to $§^2$. We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small $W^{1,p}$-change for $p<2$. This strengthens a remark by the second-named author and Strzelecki. The main novel ingredient is a homotopy construction, which is the answer to an easier variant of a challenging question regarding the existence of a norm control for homotopies between $ W^{1,p} $ maps.
ISSN:1778-3569