Lipschitz Analysis of g-Phase Retrievable Frames

A g-phase retrievable frame is a $\lambda$-phase retrievable frame in finite dimensional Hilbert space $\mathcal{H}_n$, where $\lambda$ is an special function, which is called phase coefficient function. In this paper we study the Lipschitz analysis of the nonlinear map $\alpha_{\lambda,{\mathcal{F}...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Ali Hasankhani Fard
Format: Article
Language:English
Published: University of Maragheh 2025-01-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_718214_229cd25355cfe8aba7f136a5459f92f2.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859296973094912
author Mohammad Ali Hasankhani Fard
author_facet Mohammad Ali Hasankhani Fard
author_sort Mohammad Ali Hasankhani Fard
collection DOAJ
description A g-phase retrievable frame is a $\lambda$-phase retrievable frame in finite dimensional Hilbert space $\mathcal{H}_n$, where $\lambda$ is an special function, which is called phase coefficient function. In this paper we study the Lipschitz analysis of the nonlinear map $\alpha_{\lambda,{\mathcal{F}}}:\widehat{\mathcal{H}_n}\longrightarrow\mathbb{F}^m, \ \ \ \alpha_{\lambda,{\mathcal{F}}}(\hat{x}):=\begin{bmatrix}\lambda\left( \left\langle {x,f_k}\right\rangle\right)\end{bmatrix}_{1\leq k\leq m}$, where $\widehat{\mathcal{H}_n}$ is the quotient space corresponding to a special equivalence relation on $\mathcal{H}_n$ with respect to phase coefficient function $\lambda$,  $\mathcal{F}=\{f_k\}_{k=1}^m$ is a $\lambda$-phase retrievable frame for $\mathcal{H}_n$, $\mathbb{F}=\mathbb{R}$ for real Hilbert space $\mathcal{H}_n$ and $\mathbb{F}=\mathbb{C}$ for complex Hilbert space $\mathcal{H}_n$.
format Article
id doaj-art-020889db97a847598bfc0e21b3462716
institution Kabale University
issn 2322-5807
2423-3900
language English
publishDate 2025-01-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj-art-020889db97a847598bfc0e21b34627162025-02-11T05:28:01ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002025-01-0122119320410.22130/scma.2024.2030504.1744718214Lipschitz Analysis of g-Phase Retrievable FramesMohammad Ali Hasankhani Fard0Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.A g-phase retrievable frame is a $\lambda$-phase retrievable frame in finite dimensional Hilbert space $\mathcal{H}_n$, where $\lambda$ is an special function, which is called phase coefficient function. In this paper we study the Lipschitz analysis of the nonlinear map $\alpha_{\lambda,{\mathcal{F}}}:\widehat{\mathcal{H}_n}\longrightarrow\mathbb{F}^m, \ \ \ \alpha_{\lambda,{\mathcal{F}}}(\hat{x}):=\begin{bmatrix}\lambda\left( \left\langle {x,f_k}\right\rangle\right)\end{bmatrix}_{1\leq k\leq m}$, where $\widehat{\mathcal{H}_n}$ is the quotient space corresponding to a special equivalence relation on $\mathcal{H}_n$ with respect to phase coefficient function $\lambda$,  $\mathcal{F}=\{f_k\}_{k=1}^m$ is a $\lambda$-phase retrievable frame for $\mathcal{H}_n$, $\mathbb{F}=\mathbb{R}$ for real Hilbert space $\mathcal{H}_n$ and $\mathbb{F}=\mathbb{C}$ for complex Hilbert space $\mathcal{H}_n$.https://scma.maragheh.ac.ir/article_718214_229cd25355cfe8aba7f136a5459f92f2.pdfframephase coefficient functionphase retrievable frame$\lambda$-phase retrievable frameg-phase retrievable framelipschitz continuous function
spellingShingle Mohammad Ali Hasankhani Fard
Lipschitz Analysis of g-Phase Retrievable Frames
Sahand Communications in Mathematical Analysis
frame
phase coefficient function
phase retrievable frame
$\lambda$-phase retrievable frame
g-phase retrievable frame
lipschitz continuous function
title Lipschitz Analysis of g-Phase Retrievable Frames
title_full Lipschitz Analysis of g-Phase Retrievable Frames
title_fullStr Lipschitz Analysis of g-Phase Retrievable Frames
title_full_unstemmed Lipschitz Analysis of g-Phase Retrievable Frames
title_short Lipschitz Analysis of g-Phase Retrievable Frames
title_sort lipschitz analysis of g phase retrievable frames
topic frame
phase coefficient function
phase retrievable frame
$\lambda$-phase retrievable frame
g-phase retrievable frame
lipschitz continuous function
url https://scma.maragheh.ac.ir/article_718214_229cd25355cfe8aba7f136a5459f92f2.pdf
work_keys_str_mv AT mohammadalihasankhanifard lipschitzanalysisofgphaseretrievableframes