New Subclass of Convex Functions Concerning Infinite Cone

We introduce a new subclass of convex functions as follows:\[  \mathcal{K}_{IC}:=\left\{f\in \mathcal{A}:{\rm  Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\left|f'(z)-1\right|,\quad  |z|<1\right\},\]where $\mathcal{A}$ denotes the class of analytic and normalized functions in t...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatolah Hasanvand, Shahram Najafzadeh, Ali Ebadian
Format: Article
Language:English
Published: University of Maragheh 2024-03-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_709283_84739b66a34d93ea1b4d5887d2ebc69b.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a new subclass of convex functions as follows:\[  \mathcal{K}_{IC}:=\left\{f\in \mathcal{A}:{\rm  Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\left|f'(z)-1\right|,\quad  |z|<1\right\},\]where $\mathcal{A}$ denotes the class of analytic and normalized functions in the unit disk $|z|<1$. Some properties of this particular class, including subordination relation, integral representation, the radius of convexity, rotation theorem, sharp coefficients estimate and Fekete-Szeg\"{o} inequality associated with the $k$-th root transform, are investigated.
ISSN:2322-5807
2423-3900