New Subclass of Convex Functions Concerning Infinite Cone
We introduce a new subclass of convex functions as follows:\[ \mathcal{K}_{IC}:=\left\{f\in \mathcal{A}:{\rm Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\left|f'(z)-1\right|,\quad |z|<1\right\},\]where $\mathcal{A}$ denotes the class of analytic and normalized functions in t...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2024-03-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_709283_84739b66a34d93ea1b4d5887d2ebc69b.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new subclass of convex functions as follows:\[ \mathcal{K}_{IC}:=\left\{f\in \mathcal{A}:{\rm Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\left|f'(z)-1\right|,\quad |z|<1\right\},\]where $\mathcal{A}$ denotes the class of analytic and normalized functions in the unit disk $|z|<1$. Some properties of this particular class, including subordination relation, integral representation, the radius of convexity, rotation theorem, sharp coefficients estimate and Fekete-Szeg\"{o} inequality associated with the $k$-th root transform, are investigated. |
---|---|
ISSN: | 2322-5807 2423-3900 |