Discrete moments models for Vlasov equations with non constant strong magnetic limit

We describe the structure of an original application of the method of moments to the Vlasov–Poisson system with non constant strong magnetic field in three dimensions of space. Using basis functions which are aligned with the magnetic field, one obtains a Friedrichs system where the kernel of the si...

Full description

Saved in:
Bibliographic Details
Main Authors: Charles, Frédérique, Després, Bruno, Dai, Ruiyang, Hirstoaga, Sever A.
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.219/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205979053031424
author Charles, Frédérique
Després, Bruno
Dai, Ruiyang
Hirstoaga, Sever A.
author_facet Charles, Frédérique
Després, Bruno
Dai, Ruiyang
Hirstoaga, Sever A.
author_sort Charles, Frédérique
collection DOAJ
description We describe the structure of an original application of the method of moments to the Vlasov–Poisson system with non constant strong magnetic field in three dimensions of space. Using basis functions which are aligned with the magnetic field, one obtains a Friedrichs system where the kernel of the singular part is made explicit. A projection of the original model on this kernel yields what we call the reduced model. Basic numerical tests of the field illustrate the accuracy of our implementation. A new generating formula for Laguerre polynomials is obtained in the appendix as a byproduct of the analysis.
format Article
id doaj-art-0f95e887ca1c4cd98fea078431d11003
institution Kabale University
issn 1873-7234
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-0f95e887ca1c4cd98fea078431d110032025-02-07T13:46:20ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-11-01351S130732910.5802/crmeca.21910.5802/crmeca.219Discrete moments models for Vlasov equations with non constant strong magnetic limitCharles, Frédérique0Després, Bruno1Dai, Ruiyang2Hirstoaga, Sever A.3Laboratoire Jacques-Louis Lions (LJLL), Sorbonne-Université, CNRS, Université de Paris, 75005, Paris, FranceLaboratoire Jacques-Louis Lions (LJLL), Sorbonne-Université, CNRS, Université de Paris, 75005, Paris, FranceLaboratoire Jacques-Louis Lions (LJLL), Sorbonne-Université, CNRS, Université de Paris, 75005, Paris, Franceproject-team ALPINES, Sorbonne Université and Université de Paris, CNRS, Laboratoire Jacques-Louis Lions (LJLL), 75589 Paris Cedex 12, FranceWe describe the structure of an original application of the method of moments to the Vlasov–Poisson system with non constant strong magnetic field in three dimensions of space. Using basis functions which are aligned with the magnetic field, one obtains a Friedrichs system where the kernel of the singular part is made explicit. A projection of the original model on this kernel yields what we call the reduced model. Basic numerical tests of the field illustrate the accuracy of our implementation. A new generating formula for Laguerre polynomials is obtained in the appendix as a byproduct of the analysis.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.219/moment methodVlaslov equationsnumerical method
spellingShingle Charles, Frédérique
Després, Bruno
Dai, Ruiyang
Hirstoaga, Sever A.
Discrete moments models for Vlasov equations with non constant strong magnetic limit
Comptes Rendus. Mécanique
moment method
Vlaslov equations
numerical method
title Discrete moments models for Vlasov equations with non constant strong magnetic limit
title_full Discrete moments models for Vlasov equations with non constant strong magnetic limit
title_fullStr Discrete moments models for Vlasov equations with non constant strong magnetic limit
title_full_unstemmed Discrete moments models for Vlasov equations with non constant strong magnetic limit
title_short Discrete moments models for Vlasov equations with non constant strong magnetic limit
title_sort discrete moments models for vlasov equations with non constant strong magnetic limit
topic moment method
Vlaslov equations
numerical method
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.219/
work_keys_str_mv AT charlesfrederique discretemomentsmodelsforvlasovequationswithnonconstantstrongmagneticlimit
AT despresbruno discretemomentsmodelsforvlasovequationswithnonconstantstrongmagneticlimit
AT dairuiyang discretemomentsmodelsforvlasovequationswithnonconstantstrongmagneticlimit
AT hirstoagasevera discretemomentsmodelsforvlasovequationswithnonconstantstrongmagneticlimit