Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data

Saved in:
Bibliographic Details
Main Authors: Mihkel Kotli, Geven Piir, Uko Maran
Format: Article
Language:English
Published: American Chemical Society 2025-01-01
Series:ACS Omega
Online Access:https://doi.org/10.1021/acsomega.4c09719
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859032018911232
author Mihkel Kotli
Geven Piir
Uko Maran
author_facet Mihkel Kotli
Geven Piir
Uko Maran
author_sort Mihkel Kotli
collection DOAJ
format Article
id doaj-art-1066717fab754c94b88c5d109aa7449c
institution Kabale University
issn 2470-1343
language English
publishDate 2025-01-01
publisher American Chemical Society
record_format Article
series ACS Omega
spelling doaj-art-1066717fab754c94b88c5d109aa7449c2025-02-11T09:07:36ZengAmerican Chemical SocietyACS Omega2470-13432025-01-011054732474410.1021/acsomega.4c09719Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced DataMihkel KotliGeven PiirUko Maranhttps://doi.org/10.1021/acsomega.4c09719
spellingShingle Mihkel Kotli
Geven Piir
Uko Maran
Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
ACS Omega
title Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
title_full Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
title_fullStr Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
title_full_unstemmed Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
title_short Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data
title_sort predictive modeling of pesticides reproductive toxicity in earthworms using interpretable machine learning techniques on imbalanced data
url https://doi.org/10.1021/acsomega.4c09719
work_keys_str_mv AT mihkelkotli predictivemodelingofpesticidesreproductivetoxicityinearthwormsusinginterpretablemachinelearningtechniquesonimbalanceddata
AT gevenpiir predictivemodelingofpesticidesreproductivetoxicityinearthwormsusinginterpretablemachinelearningtechniquesonimbalanceddata
AT ukomaran predictivemodelingofpesticidesreproductivetoxicityinearthwormsusinginterpretablemachinelearningtechniquesonimbalanceddata