Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita

Teknologi dan perkembangan komputer saat ini sangat membantu banyak kebutuhan dalam kehidupan, termasuk dalam hal menggantikan kemampuan seorang ahli dalam mengerjakan dan menentukan sebuah keputusan dalam permasalahan yang terjadi pada banyak orang. Dalam perkembangan sistem pakar dan sistem pendu...

Full description

Saved in:
Bibliographic Details
Main Authors: Riki Hisbullah, Muhammad Siddik Hasibuan
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-10-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/7437
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858603314905088
author Riki Hisbullah
Muhammad Siddik Hasibuan
author_facet Riki Hisbullah
Muhammad Siddik Hasibuan
author_sort Riki Hisbullah
collection DOAJ
description Teknologi dan perkembangan komputer saat ini sangat membantu banyak kebutuhan dalam kehidupan, termasuk dalam hal menggantikan kemampuan seorang ahli dalam mengerjakan dan menentukan sebuah keputusan dalam permasalahan yang terjadi pada banyak orang. Dalam perkembangan sistem pakar dan sistem pendukung keputusan juga dapat menggantikan dan menjadi solusi dari seorang ahli pakar. Bayes digunakan untuk mendiagnosis penyakit serta AHP dan TOPSIS akan digunakan untuk melakukan perangkingan penyakit pada manusia, termasuk gizi pada anak dimana sampai saat ini masalah terbesar dunia adalah bagaimana mengatasi gizi buruk yang dialami. Dengan menggunakan Sistem Pakar dan HDSS diharap Mampu menghitung kriteria yang merupakan gejala pada anak guna menghasilkan urutan anak yang menjadi fokus pantauan dimana nilai terbesar dari output sistem memberikan kepastian bahwa anak membutuhkan fokus dalam mengatasi masalah gizi yang dialaminya. Didalam Penelitian ini, Bayes, AHP dan TOPSIS mampu menghitung nilai dengan memberikan diagnosis gejala serta menempilkan nilai persentase kebutuhan pantauan pada data sampel balita yang di peroleh dari Pusat Kesehatan Masyarakat (Puskesmas) XYZ terhadap masalah gizi balita yang ada di Pusat Kesehatan Masyarakat tersebut. Dari 5 Gejala Yang di implementasikan kedalam sistem pakar (bayes) yaitu; STUNTING, GIZI LEBIH, GIZI KURANG, KWASHIORKOR, dan MARASMUS, tidak ditemukan status STUNTING. Selanjutnya pada HDSS Menghasilkan persentase 95,49% yang mana balita ini merupakan pemilik kriteria terburuk diantara balita lainnya.   Abstract Technology and the development of computers are very helpful for many people in life, including in terms of replacing the ability of an expert to do and determine a decision in problems that occur to many people. In the development of expert systems and support systems, decisions can also replace and be a solution to the scarcity of an expert. Bayes is used to diagnose disease and AHP and TOPSIS will be used to rank diseases in humans, including nutrition in children where until now the world's biggest problem is how to overcome malnutrition experienced by toddlers including stunting problems, where toddler growth  is not optimal. By using an Expert System and HDSS (namely AHP and TOPSIS) it is forbidden to calculate criteria that are symptoms in children, to produce a sequence of children who are the focus of monitoring. The greatest value of the output system provides certainty that children need focus in overcoming the problem of malnutrition. Deepened by this research, Bayes, AHP and TOPSIS were able to calculate the value by providing a diagnosis of symptoms and displaying the percentage value of the need for monitoring on the toddler sample data obtained from the XYZ Community Health Center (Puskesmas) for toddler nutrition problems in the Community Health Center. Of the 5 Symptoms implemented in the expert system (bayes) namely STUNTING, OVER NUTRITION, MALNUTRITION, KWASHIORKOR, and MARASMUS, no STUNTING status was found. Next on HDSS Produces a percentage of 95.49% of which this toddler is the owner of the worst criteria among other toddlers.
format Article
id doaj-art-18ec27a4d6714cea8aa406cfd5aea144
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2023-10-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-18ec27a4d6714cea8aa406cfd5aea1442025-02-11T10:38:39ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792023-10-0110510.25126/jtiik.20231057437Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi BalitaRiki Hisbullah0Muhammad Siddik Hasibuan1Universitas Islam Negeri Sumatera Utara, MedanUniversitas Islam Negeri Sumatera Utara, Medan Teknologi dan perkembangan komputer saat ini sangat membantu banyak kebutuhan dalam kehidupan, termasuk dalam hal menggantikan kemampuan seorang ahli dalam mengerjakan dan menentukan sebuah keputusan dalam permasalahan yang terjadi pada banyak orang. Dalam perkembangan sistem pakar dan sistem pendukung keputusan juga dapat menggantikan dan menjadi solusi dari seorang ahli pakar. Bayes digunakan untuk mendiagnosis penyakit serta AHP dan TOPSIS akan digunakan untuk melakukan perangkingan penyakit pada manusia, termasuk gizi pada anak dimana sampai saat ini masalah terbesar dunia adalah bagaimana mengatasi gizi buruk yang dialami. Dengan menggunakan Sistem Pakar dan HDSS diharap Mampu menghitung kriteria yang merupakan gejala pada anak guna menghasilkan urutan anak yang menjadi fokus pantauan dimana nilai terbesar dari output sistem memberikan kepastian bahwa anak membutuhkan fokus dalam mengatasi masalah gizi yang dialaminya. Didalam Penelitian ini, Bayes, AHP dan TOPSIS mampu menghitung nilai dengan memberikan diagnosis gejala serta menempilkan nilai persentase kebutuhan pantauan pada data sampel balita yang di peroleh dari Pusat Kesehatan Masyarakat (Puskesmas) XYZ terhadap masalah gizi balita yang ada di Pusat Kesehatan Masyarakat tersebut. Dari 5 Gejala Yang di implementasikan kedalam sistem pakar (bayes) yaitu; STUNTING, GIZI LEBIH, GIZI KURANG, KWASHIORKOR, dan MARASMUS, tidak ditemukan status STUNTING. Selanjutnya pada HDSS Menghasilkan persentase 95,49% yang mana balita ini merupakan pemilik kriteria terburuk diantara balita lainnya.   Abstract Technology and the development of computers are very helpful for many people in life, including in terms of replacing the ability of an expert to do and determine a decision in problems that occur to many people. In the development of expert systems and support systems, decisions can also replace and be a solution to the scarcity of an expert. Bayes is used to diagnose disease and AHP and TOPSIS will be used to rank diseases in humans, including nutrition in children where until now the world's biggest problem is how to overcome malnutrition experienced by toddlers including stunting problems, where toddler growth  is not optimal. By using an Expert System and HDSS (namely AHP and TOPSIS) it is forbidden to calculate criteria that are symptoms in children, to produce a sequence of children who are the focus of monitoring. The greatest value of the output system provides certainty that children need focus in overcoming the problem of malnutrition. Deepened by this research, Bayes, AHP and TOPSIS were able to calculate the value by providing a diagnosis of symptoms and displaying the percentage value of the need for monitoring on the toddler sample data obtained from the XYZ Community Health Center (Puskesmas) for toddler nutrition problems in the Community Health Center. Of the 5 Symptoms implemented in the expert system (bayes) namely STUNTING, OVER NUTRITION, MALNUTRITION, KWASHIORKOR, and MARASMUS, no STUNTING status was found. Next on HDSS Produces a percentage of 95.49% of which this toddler is the owner of the worst criteria among other toddlers. https://jtiik.ub.ac.id/index.php/jtiik/article/view/7437
spellingShingle Riki Hisbullah
Muhammad Siddik Hasibuan
Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
Jurnal Teknologi Informasi dan Ilmu Komputer
title Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
title_full Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
title_fullStr Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
title_full_unstemmed Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
title_short Pendekatan Bayes-HDSS dalam Menentukan Status Pantauan Gizi Balita
title_sort pendekatan bayes hdss dalam menentukan status pantauan gizi balita
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/7437
work_keys_str_mv AT rikihisbullah pendekatanbayeshdssdalammenentukanstatuspantauangizibalita
AT muhammadsiddikhasibuan pendekatanbayeshdssdalammenentukanstatuspantauangizibalita