Polynomial effective equidistribution

We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_2(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_2(\mathbb{C})$ and $\mathrm{SL}_2(\mathfrak{l})\times \mathrm{SL}_2(\mathfrak{l})$.The proof is based on the use of...

Full description

Saved in:
Bibliographic Details
Main Authors: Lindenstrauss, Elon, Mohammadi, Amir, Wang, Zhiren
Format: Article
Language:English
Published: Académie des sciences 2023-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.411/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_2(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_2(\mathbb{C})$ and $\mathrm{SL}_2(\mathfrak{l})\times \mathrm{SL}_2(\mathfrak{l})$.The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.
ISSN:1778-3569