Doubly slice knots and obstruction to Lagrangian concordance

In this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a Lagrangian concordance from the trivial Legendrian knot with maximal Thurston–Bennequin invariant to itself. This allows to obstr...

Full description

Saved in:
Bibliographic Details
Main Authors: Chantraine, Baptiste, Legout, Noémie
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.478/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206213163352064
author Chantraine, Baptiste
Legout, Noémie
author_facet Chantraine, Baptiste
Legout, Noémie
author_sort Chantraine, Baptiste
collection DOAJ
description In this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a Lagrangian concordance from the trivial Legendrian knot with maximal Thurston–Bennequin invariant to itself. This allows to obstruct concordances from the Pretzel knot $P(3,-3,-m)$ when $m\ge 4$ to the unknot. Those examples are of interest because the Legendrian contact homology algebra cannot be used to obstruct such a concordance.
format Article
id doaj-art-218d1911676348289f3c89ebb3a69360
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-218d1911676348289f3c89ebb3a693602025-02-07T11:11:47ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101605160910.5802/crmath.47810.5802/crmath.478Doubly slice knots and obstruction to Lagrangian concordanceChantraine, Baptiste0Legout, Noémie1Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, F-44000 Nantes, FranceUppsala University, Department of Mathematics, Box 480, 751 06 Uppsala, SwedenIn this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a Lagrangian concordance from the trivial Legendrian knot with maximal Thurston–Bennequin invariant to itself. This allows to obstruct concordances from the Pretzel knot $P(3,-3,-m)$ when $m\ge 4$ to the unknot. Those examples are of interest because the Legendrian contact homology algebra cannot be used to obstruct such a concordance.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.478/
spellingShingle Chantraine, Baptiste
Legout, Noémie
Doubly slice knots and obstruction to Lagrangian concordance
Comptes Rendus. Mathématique
title Doubly slice knots and obstruction to Lagrangian concordance
title_full Doubly slice knots and obstruction to Lagrangian concordance
title_fullStr Doubly slice knots and obstruction to Lagrangian concordance
title_full_unstemmed Doubly slice knots and obstruction to Lagrangian concordance
title_short Doubly slice knots and obstruction to Lagrangian concordance
title_sort doubly slice knots and obstruction to lagrangian concordance
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.478/
work_keys_str_mv AT chantrainebaptiste doublysliceknotsandobstructiontolagrangianconcordance
AT legoutnoemie doublysliceknotsandobstructiontolagrangianconcordance