Consecutive Power Occurrences in Sturmian Words
We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by $10$ and this bound is optimal, extending a result of Rampersad, who proved that the bound $9$ holds for the Fibonacci word. We then give a gen...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.644/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by $10$ and this bound is optimal, extending a result of Rampersad, who proved that the bound $9$ holds for the Fibonacci word. We then give a general result showing that for every $e \in [1,(5+\sqrt{5})/2)$ there is a natural number $N$, depending only on $e$, such that every Sturmian word has the property that the distance between consecutive ending positions of $e$-powers occurring in the word is uniformly bounded by $N$. |
---|---|
ISSN: | 1778-3569 |