On generalized Euler constants

The generalized Euler constants are defined by formulas γ(r, k) = limx → ∞ {∑0 < n ≤  x; n ≡  r(mod k) ⅟n - ⅟k log x}. The explicit formula for γ(r, k) is obtained applying the method of contour integration.

Saved in:
Bibliographic Details
Main Author: Eugenijus Stankus
Format: Article
Language:English
Published: Vilnius University Press 2002-12-01
Series:Lietuvos Matematikos Rinkinys
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/32833
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825197224759394304
author Eugenijus Stankus
author_facet Eugenijus Stankus
author_sort Eugenijus Stankus
collection DOAJ
description The generalized Euler constants are defined by formulas γ(r, k) = limx → ∞ {∑0 < n ≤  x; n ≡  r(mod k) ⅟n - ⅟k log x}. The explicit formula for γ(r, k) is obtained applying the method of contour integration.
format Article
id doaj-art-26ccd34754e74b028cf177698df57208
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 2002-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-26ccd34754e74b028cf177698df572082025-02-11T18:13:55ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2002-12-0142spec.10.15388/LMR.2002.32833On generalized Euler constantsEugenijus Stankus0Vilniaus University The generalized Euler constants are defined by formulas γ(r, k) = limx → ∞ {∑0 < n ≤  x; n ≡  r(mod k) ⅟n - ⅟k log x}. The explicit formula for γ(r, k) is obtained applying the method of contour integration. https://www.zurnalai.vu.lt/LMR/article/view/32833
spellingShingle Eugenijus Stankus
On generalized Euler constants
Lietuvos Matematikos Rinkinys
title On generalized Euler constants
title_full On generalized Euler constants
title_fullStr On generalized Euler constants
title_full_unstemmed On generalized Euler constants
title_short On generalized Euler constants
title_sort on generalized euler constants
url https://www.zurnalai.vu.lt/LMR/article/view/32833
work_keys_str_mv AT eugenijusstankus ongeneralizedeulerconstants