A note on the exact formulas for certain $2$-color partitions
Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of M...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al. |
---|---|
ISSN: | 1778-3569 |