A note on the exact formulas for certain $2$-color partitions

Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of M...

Full description

Saved in:
Bibliographic Details
Main Author: Guadalupe, Russelle
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206141212164096
author Guadalupe, Russelle
author_facet Guadalupe, Russelle
author_sort Guadalupe, Russelle
collection DOAJ
description Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al.
format Article
id doaj-art-2b49b5617c054db0a34f02d67c318e55
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-2b49b5617c054db0a34f02d67c318e552025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111485149010.5802/crmath.65810.5802/crmath.658A note on the exact formulas for certain $2$-color partitionsGuadalupe, Russelle0https://orcid.org/0009-0001-8974-4502Institute of Mathematics, University of the Philippines-Diliman, Quezon City, 1101, PhilippinesLet $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/Circle method$\eta $-quotientspartitionsasymptotic formula
spellingShingle Guadalupe, Russelle
A note on the exact formulas for certain $2$-color partitions
Comptes Rendus. Mathématique
Circle method
$\eta $-quotients
partitions
asymptotic formula
title A note on the exact formulas for certain $2$-color partitions
title_full A note on the exact formulas for certain $2$-color partitions
title_fullStr A note on the exact formulas for certain $2$-color partitions
title_full_unstemmed A note on the exact formulas for certain $2$-color partitions
title_short A note on the exact formulas for certain $2$-color partitions
title_sort note on the exact formulas for certain 2 color partitions
topic Circle method
$\eta $-quotients
partitions
asymptotic formula
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/
work_keys_str_mv AT guadaluperusselle anoteontheexactformulasforcertain2colorpartitions
AT guadaluperusselle noteontheexactformulasforcertain2colorpartitions