Dendritic excitations govern back-propagation via a spike-rate accelerometer
Abstract Dendrites on neurons support electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-55819-9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823861790455365632 |
---|---|
author | Pojeong Park J. David Wong-Campos Daniel G. Itkis Byung Hun Lee Yitong Qi Hunter C. Davis Benjamin Antin Amol Pasarkar Jonathan B. Grimm Sarah E. Plutkis Katie L. Holland Liam Paninski Luke D. Lavis Adam E. Cohen |
author_facet | Pojeong Park J. David Wong-Campos Daniel G. Itkis Byung Hun Lee Yitong Qi Hunter C. Davis Benjamin Antin Amol Pasarkar Jonathan B. Grimm Sarah E. Plutkis Katie L. Holland Liam Paninski Luke D. Lavis Adam E. Cohen |
author_sort | Pojeong Park |
collection | DOAJ |
description | Abstract Dendrites on neurons support electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. Our data show history-dependent spike back-propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization created a transient window for dSpike propagation, opened by A-type KV channel inactivation, and closed by slow NaV inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent dendritic plateau potentials and accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture connecting dendritic biophysics to associative plasticity rules. |
format | Article |
id | doaj-art-2d3d5a4a894b42dd8dabb687dc5d6158 |
institution | Kabale University |
issn | 2041-1723 |
language | English |
publishDate | 2025-02-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj-art-2d3d5a4a894b42dd8dabb687dc5d61582025-02-09T12:43:56ZengNature PortfolioNature Communications2041-17232025-02-0116112010.1038/s41467-025-55819-9Dendritic excitations govern back-propagation via a spike-rate accelerometerPojeong Park0J. David Wong-Campos1Daniel G. Itkis2Byung Hun Lee3Yitong Qi4Hunter C. Davis5Benjamin Antin6Amol Pasarkar7Jonathan B. Grimm8Sarah E. Plutkis9Katie L. Holland10Liam Paninski11Luke D. Lavis12Adam E. Cohen13Department of Chemistry and Chemical Biology, Harvard UniversityDepartment of Chemistry and Chemical Biology, Harvard UniversityDepartment of Chemistry and Chemical Biology, Harvard UniversityDepartment of Chemistry and Chemical Biology, Harvard UniversityDepartment of Chemistry and Chemical Biology, Harvard UniversityDepartment of Chemistry and Chemical Biology, Harvard UniversityDepartments of Statistics and Neuroscience, Columbia UniversityDepartments of Statistics and Neuroscience, Columbia UniversityJanelia Research Campus, Howard Hughes Medical InstituteJanelia Research Campus, Howard Hughes Medical InstituteJanelia Research Campus, Howard Hughes Medical InstituteDepartments of Statistics and Neuroscience, Columbia UniversityJanelia Research Campus, Howard Hughes Medical InstituteDepartment of Chemistry and Chemical Biology, Harvard UniversityAbstract Dendrites on neurons support electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. Our data show history-dependent spike back-propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization created a transient window for dSpike propagation, opened by A-type KV channel inactivation, and closed by slow NaV inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent dendritic plateau potentials and accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture connecting dendritic biophysics to associative plasticity rules.https://doi.org/10.1038/s41467-025-55819-9 |
spellingShingle | Pojeong Park J. David Wong-Campos Daniel G. Itkis Byung Hun Lee Yitong Qi Hunter C. Davis Benjamin Antin Amol Pasarkar Jonathan B. Grimm Sarah E. Plutkis Katie L. Holland Liam Paninski Luke D. Lavis Adam E. Cohen Dendritic excitations govern back-propagation via a spike-rate accelerometer Nature Communications |
title | Dendritic excitations govern back-propagation via a spike-rate accelerometer |
title_full | Dendritic excitations govern back-propagation via a spike-rate accelerometer |
title_fullStr | Dendritic excitations govern back-propagation via a spike-rate accelerometer |
title_full_unstemmed | Dendritic excitations govern back-propagation via a spike-rate accelerometer |
title_short | Dendritic excitations govern back-propagation via a spike-rate accelerometer |
title_sort | dendritic excitations govern back propagation via a spike rate accelerometer |
url | https://doi.org/10.1038/s41467-025-55819-9 |
work_keys_str_mv | AT pojeongpark dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT jdavidwongcampos dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT danielgitkis dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT byunghunlee dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT yitongqi dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT huntercdavis dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT benjaminantin dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT amolpasarkar dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT jonathanbgrimm dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT saraheplutkis dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT katielholland dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT liampaninski dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT lukedlavis dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer AT adamecohen dendriticexcitationsgovernbackpropagationviaaspikerateaccelerometer |