The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field

Let $K$ be a field and $V$ be a set of rank one valuations of $K$. The corresponding Tate–Shafarevich group of a $K$-torus $T$ is $\Sha (T, V) = \ker (H^1(K, T) \rightarrow \prod _{v\,\in \,V} H^1(K_v, T))$. We prove that if $K = k(X)$ is the function field of a smooth geometrically integral quasi-p...

Full description

Saved in:
Bibliographic Details
Main Authors: Rapinchuk, Andrei, Rapinchuk, Igor
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.588/
Tags: Add Tag
No Tags, Be the first to tag this record!