On the boundedness of a family of oscillatory singular integrals

Let $\Omega \in H^1(\mathbb{S}^{n-1})$ with mean value zero, $P$ and $Q$ be polynomials in $n$ variables with real coefficients and $Q(0)=0$. We prove that \[ \Biggl |\mbox {p.v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}\mathrm{d}x\Biggr | \le A \Vert \Omega \Vert _{H^1(\mat...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Qassem, Hussain, Cheng, Leslie, Pan, Yibiao
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.523/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206220815859712
author Al-Qassem, Hussain
Cheng, Leslie
Pan, Yibiao
author_facet Al-Qassem, Hussain
Cheng, Leslie
Pan, Yibiao
author_sort Al-Qassem, Hussain
collection DOAJ
description Let $\Omega \in H^1(\mathbb{S}^{n-1})$ with mean value zero, $P$ and $Q$ be polynomials in $n$ variables with real coefficients and $Q(0)=0$. We prove that \[ \Biggl |\mbox {p.v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}\mathrm{d}x\Biggr | \le A \Vert \Omega \Vert _{H^1(\mathbb{S}^{n-1})} \] where $A$ may depend on $n$, $\deg (P)$ and $\deg (Q)$, but not otherwise on the coefficients of $P$ and $Q$.The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.
format Article
id doaj-art-3642aa2954fb4d289370073bfb3ba4a9
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3642aa2954fb4d289370073bfb3ba4a92025-02-07T11:11:47ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101673168110.5802/crmath.52310.5802/crmath.523On the boundedness of a family of oscillatory singular integralsAl-Qassem, Hussain0Cheng, Leslie1Pan, Yibiao2Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, QatarDepartment of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, U.S.A.Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.Let $\Omega \in H^1(\mathbb{S}^{n-1})$ with mean value zero, $P$ and $Q$ be polynomials in $n$ variables with real coefficients and $Q(0)=0$. We prove that \[ \Biggl |\mbox {p.v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}\mathrm{d}x\Biggr | \le A \Vert \Omega \Vert _{H^1(\mathbb{S}^{n-1})} \] where $A$ may depend on $n$, $\deg (P)$ and $\deg (Q)$, but not otherwise on the coefficients of $P$ and $Q$.The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.523/oscillatory integralssingular integralsCalderón–Zygmund kernelsHardy spaces
spellingShingle Al-Qassem, Hussain
Cheng, Leslie
Pan, Yibiao
On the boundedness of a family of oscillatory singular integrals
Comptes Rendus. Mathématique
oscillatory integrals
singular integrals
Calderón–Zygmund kernels
Hardy spaces
title On the boundedness of a family of oscillatory singular integrals
title_full On the boundedness of a family of oscillatory singular integrals
title_fullStr On the boundedness of a family of oscillatory singular integrals
title_full_unstemmed On the boundedness of a family of oscillatory singular integrals
title_short On the boundedness of a family of oscillatory singular integrals
title_sort on the boundedness of a family of oscillatory singular integrals
topic oscillatory integrals
singular integrals
Calderón–Zygmund kernels
Hardy spaces
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.523/
work_keys_str_mv AT alqassemhussain ontheboundednessofafamilyofoscillatorysingularintegrals
AT chengleslie ontheboundednessofafamilyofoscillatorysingularintegrals
AT panyibiao ontheboundednessofafamilyofoscillatorysingularintegrals