On the boundedness of a family of oscillatory singular integrals
Let $\Omega \in H^1(\mathbb{S}^{n-1})$ with mean value zero, $P$ and $Q$ be polynomials in $n$ variables with real coefficients and $Q(0)=0$. We prove that \[ \Biggl |\mbox {p.v.}\int _{\mathbb{R}^n}e^{i(P(x)+1/Q(x))}\frac{\Omega (x/|x|)}{|x|^n}\mathrm{d}x\Biggr | \le A \Vert \Omega \Vert _{H^1(\mat...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.523/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!