Some remarks on the ergodic theorem for $U$-statistics

In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is neede...

Full description

Saved in:
Bibliographic Details
Main Authors: Dehling, Herold, Giraudo, Davide, Volný, Dalibor
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206221548814336
author Dehling, Herold
Giraudo, Davide
Volný, Dalibor
author_facet Dehling, Herold
Giraudo, Davide
Volný, Dalibor
author_sort Dehling, Herold
collection DOAJ
description In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is needed as well as finiteness of $\sup _{j\ge 2}\mathbb{E}[|h(X_1,X_j)|]$.
format Article
id doaj-art-3956bb636b744c2184af4006c2534e2b
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3956bb636b744c2184af4006c2534e2b2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91511151910.5802/crmath.49410.5802/crmath.494Some remarks on the ergodic theorem for $U$-statisticsDehling, Herold0Giraudo, Davide1Volný, Dalibor2Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, GermanyInstitut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg and CNRS 7 rue René Descartes 67000 Strasbourg, FranceUniversity de Rouen, LMRS and CNRS UMR 6085.In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is needed as well as finiteness of $\sup _{j\ge 2}\mathbb{E}[|h(X_1,X_j)|]$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/
spellingShingle Dehling, Herold
Giraudo, Davide
Volný, Dalibor
Some remarks on the ergodic theorem for $U$-statistics
Comptes Rendus. Mathématique
title Some remarks on the ergodic theorem for $U$-statistics
title_full Some remarks on the ergodic theorem for $U$-statistics
title_fullStr Some remarks on the ergodic theorem for $U$-statistics
title_full_unstemmed Some remarks on the ergodic theorem for $U$-statistics
title_short Some remarks on the ergodic theorem for $U$-statistics
title_sort some remarks on the ergodic theorem for u statistics
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/
work_keys_str_mv AT dehlingherold someremarksontheergodictheoremforustatistics
AT giraudodavide someremarksontheergodictheoremforustatistics
AT volnydalibor someremarksontheergodictheoremforustatistics