Some remarks on the ergodic theorem for $U$-statistics
In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is neede...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-11-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206221548814336 |
---|---|
author | Dehling, Herold Giraudo, Davide Volný, Dalibor |
author_facet | Dehling, Herold Giraudo, Davide Volný, Dalibor |
author_sort | Dehling, Herold |
collection | DOAJ |
description | In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is needed as well as finiteness of $\sup _{j\ge 2}\mathbb{E}[|h(X_1,X_j)|]$. |
format | Article |
id | doaj-art-3956bb636b744c2184af4006c2534e2b |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-3956bb636b744c2184af4006c2534e2b2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91511151910.5802/crmath.49410.5802/crmath.494Some remarks on the ergodic theorem for $U$-statisticsDehling, Herold0Giraudo, Davide1Volný, Dalibor2Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, GermanyInstitut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg and CNRS 7 rue René Descartes 67000 Strasbourg, FranceUniversity de Rouen, LMRS and CNRS UMR 6085.In this note, we investigate the convergence of a $U$-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and $L^1$ convergence and present some counter-examples showing that the $U$-statistic itself might fail to converge: centering is needed as well as finiteness of $\sup _{j\ge 2}\mathbb{E}[|h(X_1,X_j)|]$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/ |
spellingShingle | Dehling, Herold Giraudo, Davide Volný, Dalibor Some remarks on the ergodic theorem for $U$-statistics Comptes Rendus. Mathématique |
title | Some remarks on the ergodic theorem for $U$-statistics |
title_full | Some remarks on the ergodic theorem for $U$-statistics |
title_fullStr | Some remarks on the ergodic theorem for $U$-statistics |
title_full_unstemmed | Some remarks on the ergodic theorem for $U$-statistics |
title_short | Some remarks on the ergodic theorem for $U$-statistics |
title_sort | some remarks on the ergodic theorem for u statistics |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.494/ |
work_keys_str_mv | AT dehlingherold someremarksontheergodictheoremforustatistics AT giraudodavide someremarksontheergodictheoremforustatistics AT volnydalibor someremarksontheergodictheoremforustatistics |