On the critical behavior for a Sobolev-type inequality with Hardy potential

We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $ -\partial _t(\Delta u)-\Delta u+ \frac{\sigma }{|x|^2}u \ge |x|^{\mu }|u|^p$ in $(0,\infty )\times B$, under the inhomogeneous Dirichlet-type boundary condition $u(t,x)=f(x)$ on $(0,\infty )\times \parti...

Full description

Saved in:
Bibliographic Details
Main Authors: Jleli, Mohamed, Samet, Bessem
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.534/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206222749433856
author Jleli, Mohamed
Samet, Bessem
author_facet Jleli, Mohamed
Samet, Bessem
author_sort Jleli, Mohamed
collection DOAJ
description We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $ -\partial _t(\Delta u)-\Delta u+ \frac{\sigma }{|x|^2}u \ge |x|^{\mu }|u|^p$ in $(0,\infty )\times B$, under the inhomogeneous Dirichlet-type boundary condition $u(t,x)=f(x)$ on $(0,\infty )\times \partial B$, where $B$ is the unit open ball of $\mathbb{R}^N$, $N\ge 2$, $\sigma >-\bigl (\frac{N-2}{2}\bigr )^2$, $\mu \in \mathbb{R}$ and $p>1$. In particular, when $\sigma \ne 0$, we show that the dividing line with respect to existence and nonexistence is given by a critical exponent that depends on $N$, $\sigma $ and $\mu $.
format Article
id doaj-art-3a8b318bfbb848148029ea6c177cf97a
institution Kabale University
issn 1778-3569
language English
publishDate 2024-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3a8b318bfbb848148029ea6c177cf97a2025-02-07T11:12:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-02-01362G1879710.5802/crmath.53410.5802/crmath.534On the critical behavior for a Sobolev-type inequality with Hardy potentialJleli, Mohamed0Samet, Bessem1Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi ArabiaWe investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $ -\partial _t(\Delta u)-\Delta u+ \frac{\sigma }{|x|^2}u \ge |x|^{\mu }|u|^p$ in $(0,\infty )\times B$, under the inhomogeneous Dirichlet-type boundary condition $u(t,x)=f(x)$ on $(0,\infty )\times \partial B$, where $B$ is the unit open ball of $\mathbb{R}^N$, $N\ge 2$, $\sigma >-\bigl (\frac{N-2}{2}\bigr )^2$, $\mu \in \mathbb{R}$ and $p>1$. In particular, when $\sigma \ne 0$, we show that the dividing line with respect to existence and nonexistence is given by a critical exponent that depends on $N$, $\sigma $ and $\mu $.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.534/Sobolev-type inequalityHardy potentialbounded domainexistencenonexistencecritical exponent
spellingShingle Jleli, Mohamed
Samet, Bessem
On the critical behavior for a Sobolev-type inequality with Hardy potential
Comptes Rendus. Mathématique
Sobolev-type inequality
Hardy potential
bounded domain
existence
nonexistence
critical exponent
title On the critical behavior for a Sobolev-type inequality with Hardy potential
title_full On the critical behavior for a Sobolev-type inequality with Hardy potential
title_fullStr On the critical behavior for a Sobolev-type inequality with Hardy potential
title_full_unstemmed On the critical behavior for a Sobolev-type inequality with Hardy potential
title_short On the critical behavior for a Sobolev-type inequality with Hardy potential
title_sort on the critical behavior for a sobolev type inequality with hardy potential
topic Sobolev-type inequality
Hardy potential
bounded domain
existence
nonexistence
critical exponent
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.534/
work_keys_str_mv AT jlelimohamed onthecriticalbehaviorforasobolevtypeinequalitywithhardypotential
AT sametbessem onthecriticalbehaviorforasobolevtypeinequalitywithhardypotential