Upper-bound estimates for weighted sums satisfying Cramer’s condition

Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj  > 0 denotes weight. We consider the case, when Sj  is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second o...

Full description

Saved in:
Bibliographic Details
Main Authors: Vydas Čekanavičius, Aistė Elijio
Format: Article
Language:English
Published: Vilnius University Press 2023-09-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/30784
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823857895613136896
author Vydas Čekanavičius
Aistė Elijio
author_facet Vydas Čekanavičius
Aistė Elijio
author_sort Vydas Čekanavičius
collection DOAJ
description Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj  > 0 denotes weight. We consider the case, when Sj  is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established.
format Article
id doaj-art-3a9ea7c8629e40909f71648ffef0549b
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 2023-09-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-3a9ea7c8629e40909f71648ffef0549b2025-02-11T18:12:26ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2023-09-0146spec.10.15388/LMR.2006.30784Upper-bound estimates for weighted sums satisfying Cramer’s conditionVydas Čekanavičius0Aistė Elijio1Vilnius UniversityVilnius University Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj  > 0 denotes weight. We consider the case, when Sj  is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established. https://www.zurnalai.vu.lt/LMR/article/view/30784compound Poisson distributionsigned compound PoissonmeasureKolmogorov distance
spellingShingle Vydas Čekanavičius
Aistė Elijio
Upper-bound estimates for weighted sums satisfying Cramer’s condition
Lietuvos Matematikos Rinkinys
compound Poisson distribution
signed compound Poissonmeasure
Kolmogorov distance
title Upper-bound estimates for weighted sums satisfying Cramer’s condition
title_full Upper-bound estimates for weighted sums satisfying Cramer’s condition
title_fullStr Upper-bound estimates for weighted sums satisfying Cramer’s condition
title_full_unstemmed Upper-bound estimates for weighted sums satisfying Cramer’s condition
title_short Upper-bound estimates for weighted sums satisfying Cramer’s condition
title_sort upper bound estimates for weighted sums satisfying cramer s condition
topic compound Poisson distribution
signed compound Poissonmeasure
Kolmogorov distance
url https://www.zurnalai.vu.lt/LMR/article/view/30784
work_keys_str_mv AT vydascekanavicius upperboundestimatesforweightedsumssatisfyingcramerscondition
AT aisteelijio upperboundestimatesforweightedsumssatisfyingcramerscondition