Upper-bound estimates for weighted sums satisfying Cramer’s condition
Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second o...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2023-09-01
|
Series: | Lietuvos Matematikos Rinkinys |
Subjects: | |
Online Access: | https://www.zurnalai.vu.lt/LMR/article/view/30784 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823857895613136896 |
---|---|
author | Vydas Čekanavičius Aistė Elijio |
author_facet | Vydas Čekanavičius Aistė Elijio |
author_sort | Vydas Čekanavičius |
collection | DOAJ |
description |
Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established.
|
format | Article |
id | doaj-art-3a9ea7c8629e40909f71648ffef0549b |
institution | Kabale University |
issn | 0132-2818 2335-898X |
language | English |
publishDate | 2023-09-01 |
publisher | Vilnius University Press |
record_format | Article |
series | Lietuvos Matematikos Rinkinys |
spelling | doaj-art-3a9ea7c8629e40909f71648ffef0549b2025-02-11T18:12:26ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2023-09-0146spec.10.15388/LMR.2006.30784Upper-bound estimates for weighted sums satisfying Cramer’s conditionVydas Čekanavičius0Aistė Elijio1Vilnius UniversityVilnius University Let S = ω1S1 + ω2S2 + ⋯ + ωNSN. Here Sj is the sum of identically distributed random variables and ωj > 0 denotes weight. We consider the case, when Sj is the sum of independent random variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and second order approximations in uniformmetric are established. https://www.zurnalai.vu.lt/LMR/article/view/30784compound Poisson distributionsigned compound PoissonmeasureKolmogorov distance |
spellingShingle | Vydas Čekanavičius Aistė Elijio Upper-bound estimates for weighted sums satisfying Cramer’s condition Lietuvos Matematikos Rinkinys compound Poisson distribution signed compound Poissonmeasure Kolmogorov distance |
title | Upper-bound estimates for weighted sums satisfying Cramer’s condition |
title_full | Upper-bound estimates for weighted sums satisfying Cramer’s condition |
title_fullStr | Upper-bound estimates for weighted sums satisfying Cramer’s condition |
title_full_unstemmed | Upper-bound estimates for weighted sums satisfying Cramer’s condition |
title_short | Upper-bound estimates for weighted sums satisfying Cramer’s condition |
title_sort | upper bound estimates for weighted sums satisfying cramer s condition |
topic | compound Poisson distribution signed compound Poissonmeasure Kolmogorov distance |
url | https://www.zurnalai.vu.lt/LMR/article/view/30784 |
work_keys_str_mv | AT vydascekanavicius upperboundestimatesforweightedsumssatisfyingcramerscondition AT aisteelijio upperboundestimatesforweightedsumssatisfyingcramerscondition |