Wigner function method for the Gibbons–Hawking and the Unruh effect

An observer at rest with the expanding universe experiences some extra noise in the quantum vacuum, and so does an accelerated observer in a vacuum at rest (in Minkowski space). The literature mainly focuses on the ideal cases of exponential expansion (de–Sitter space) or uniform acceleration (Rindl...

Full description

Saved in:
Bibliographic Details
Main Authors: Landau, Ziv, Leonhardt, Ulf
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Physique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.201/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An observer at rest with the expanding universe experiences some extra noise in the quantum vacuum, and so does an accelerated observer in a vacuum at rest (in Minkowski space). The literature mainly focuses on the ideal cases of exponential expansion (de–Sitter space) or uniform acceleration (Rindler trajectories) or both, but the real cosmic expansion is non–exponential and real accelerations are non–uniform. Here we use the frequency–time Wigner function of vacuum correlations to define time–dependent spectra. We found excellent Planck spectra for a class of realistic cosmological models, but also strongly non–Planckian, negative Wigner functions for a standard scenario testable with laboratory analogues.
ISSN:1878-1535