On subsets of asymptotic bases
Let $h\ge 2$ be an integer. In this paper, we prove that if $A$ is an asymptotic basis of order $h$ and $B$ is a nonempty subset of $A$, then either there exists a finite subset $F$ of $A$ such that $F\cup B$ is an asymptotic basis of order $h$, or for any $\varepsilon >0$, there exists a finite...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-02-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.513/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $h\ge 2$ be an integer. In this paper, we prove that if $A$ is an asymptotic basis of order $h$ and $B$ is a nonempty subset of $A$, then either there exists a finite subset $F$ of $A$ such that $F\cup B$ is an asymptotic basis of order $h$, or for any $\varepsilon >0$, there exists a finite subset $F_\varepsilon $ of $A$ such that $d_L(h(F_\varepsilon \cup B))\ge hd_L(B)-\varepsilon $, where $d_L(X)$ denotes the lower asymptotic density of $X$ and $hX$ denotes the set of all $x_1+\cdots +x_h$ with $x_i\in X$ $(1\le i\le h)$. This generalizes a result of Nathanson and Sárközy. |
---|---|
ISSN: | 1778-3569 |