Essential Norm of the Weighted Composition Operators Between Growth Space

For $\alpha>0$, the growth space $\mathcal{A}^{-\alpha}$ is the space of all function $f\in H(\DD)$ such that $$\left\|f\right\|_{\mathcal{A}^{-\alpha}}=\sup_{z\in\DD}\left(1-\left|z\right|^2\right)^\alpha \left|f(z)\right|<\infty.$$In this work, we obtain exact formula for the norm  of weight...

Full description

Saved in:
Bibliographic Details
Main Authors: Ebrahim Abbasi, Mostafa Hassanlou
Format: Article
Language:English
Published: University of Maragheh 2025-01-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_717027_6367ede6336da64575e2df7de0846ac7.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859310753480704
author Ebrahim Abbasi
Mostafa Hassanlou
author_facet Ebrahim Abbasi
Mostafa Hassanlou
author_sort Ebrahim Abbasi
collection DOAJ
description For $\alpha>0$, the growth space $\mathcal{A}^{-\alpha}$ is the space of all function $f\in H(\DD)$ such that $$\left\|f\right\|_{\mathcal{A}^{-\alpha}}=\sup_{z\in\DD}\left(1-\left|z\right|^2\right)^\alpha \left|f(z)\right|<\infty.$$In this work, we obtain exact formula for the norm  of weighted composition operators from $\mathcal{A}^{-\alpha}$ into $\mathcal{A}^{-\beta}$. Especially, we show that\begin{align*}\left\|uC_\varphi\right\|_{ \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}}= \sup_{z\in\mathbb{D}}\frac{\left(1-\left |z \right|^2\right)^\beta \left|u(z)\right|}{\left(1-\left |\varphi(z) \right|^2 \right)^\alpha}.\end{align*}As a corollary, we show that $C_\varphi: \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\alpha}$ is isometry if and only if $\f$ is  rotation. Then the exact formula for the essential norm $uC_\varphi:  \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}$ is given as follow$$\left\|uC_\varphi\right\|_{e, \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}}= \left(\frac{e}{2\alpha}\right)^\alpha \limsup n^\alpha \left\|u\varphi^{n-1}\right\|_{\mathcal{A}^{-\beta}}.$$Also, some equivalence conditions for compactness of such operators operator  between difference growth spaces are given.
format Article
id doaj-art-3bcea1e344314ea58178ae8fbf840ba3
institution Kabale University
issn 2322-5807
2423-3900
language English
publishDate 2025-01-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj-art-3bcea1e344314ea58178ae8fbf840ba32025-02-11T05:28:01ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002025-01-0122113714710.22130/scma.2024.2026204.1694717027Essential Norm of the Weighted Composition Operators Between Growth SpaceEbrahim Abbasi0Mostafa Hassanlou1Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran.Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran.For $\alpha>0$, the growth space $\mathcal{A}^{-\alpha}$ is the space of all function $f\in H(\DD)$ such that $$\left\|f\right\|_{\mathcal{A}^{-\alpha}}=\sup_{z\in\DD}\left(1-\left|z\right|^2\right)^\alpha \left|f(z)\right|<\infty.$$In this work, we obtain exact formula for the norm  of weighted composition operators from $\mathcal{A}^{-\alpha}$ into $\mathcal{A}^{-\beta}$. Especially, we show that\begin{align*}\left\|uC_\varphi\right\|_{ \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}}= \sup_{z\in\mathbb{D}}\frac{\left(1-\left |z \right|^2\right)^\beta \left|u(z)\right|}{\left(1-\left |\varphi(z) \right|^2 \right)^\alpha}.\end{align*}As a corollary, we show that $C_\varphi: \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\alpha}$ is isometry if and only if $\f$ is  rotation. Then the exact formula for the essential norm $uC_\varphi:  \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}$ is given as follow$$\left\|uC_\varphi\right\|_{e, \mathcal{A}^{-\alpha}\rightarrow \mathcal{A}^{-\beta}}= \left(\frac{e}{2\alpha}\right)^\alpha \limsup n^\alpha \left\|u\varphi^{n-1}\right\|_{\mathcal{A}^{-\beta}}.$$Also, some equivalence conditions for compactness of such operators operator  between difference growth spaces are given.https://scma.maragheh.ac.ir/article_717027_6367ede6336da64575e2df7de0846ac7.pdfessential normgrowth spaceisometrynorm
spellingShingle Ebrahim Abbasi
Mostafa Hassanlou
Essential Norm of the Weighted Composition Operators Between Growth Space
Sahand Communications in Mathematical Analysis
essential norm
growth space
isometry
norm
title Essential Norm of the Weighted Composition Operators Between Growth Space
title_full Essential Norm of the Weighted Composition Operators Between Growth Space
title_fullStr Essential Norm of the Weighted Composition Operators Between Growth Space
title_full_unstemmed Essential Norm of the Weighted Composition Operators Between Growth Space
title_short Essential Norm of the Weighted Composition Operators Between Growth Space
title_sort essential norm of the weighted composition operators between growth space
topic essential norm
growth space
isometry
norm
url https://scma.maragheh.ac.ir/article_717027_6367ede6336da64575e2df7de0846ac7.pdf
work_keys_str_mv AT ebrahimabbasi essentialnormoftheweightedcompositionoperatorsbetweengrowthspace
AT mostafahassanlou essentialnormoftheweightedcompositionoperatorsbetweengrowthspace