An EEG dataset for interictal epileptiform discharge with spatial distribution information

Abstract Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Nan Lin, Mengxuan Zheng, Lian Li, Peng Hu, Weifang Gao, Heyang Sun, Chang Xu, Gonglin Yuan, Zi Liang, Yisu Dong, Haibo He, Liying Cui, Qiang Lu
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04572-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823863260243296256
author Nan Lin
Mengxuan Zheng
Lian Li
Peng Hu
Weifang Gao
Heyang Sun
Chang Xu
Gonglin Yuan
Zi Liang
Yisu Dong
Haibo He
Liying Cui
Qiang Lu
author_facet Nan Lin
Mengxuan Zheng
Lian Li
Peng Hu
Weifang Gao
Heyang Sun
Chang Xu
Gonglin Yuan
Zi Liang
Yisu Dong
Haibo He
Liying Cui
Qiang Lu
author_sort Nan Lin
collection DOAJ
description Abstract Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this paper, we present a comprehensive EEG dataset containing annotated interictal epileptic data from 84 patients, each contributing 20 minutes of continuous raw EEG recordings, totaling 28 hours. IEDs and states of consciousness (wake/sleep) were meticulously annotated by at least three EEG experts. The IEDs were categorized into five types based on occurrence regions: generalized, frontal, temporal, occipital, and centro-parietal. The dataset includes 2,516 IED epochs and 22,933 non-IED epochs, each 4 seconds long. We developed and validated a VGG-based model for IED detection using this dataset, achieving improved performance with the inclusion of consciousness and/or spatial distribution information. Additionally, our dataset serves as a reliable test set for evaluating and comparing existing IED detection models.
format Article
id doaj-art-3bf6cfd8fa3b432bb43b9fc7b9a9b58b
institution Kabale University
issn 2052-4463
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-3bf6cfd8fa3b432bb43b9fc7b9a9b58b2025-02-09T12:11:32ZengNature PortfolioScientific Data2052-44632025-02-011211810.1038/s41597-025-04572-1An EEG dataset for interictal epileptiform discharge with spatial distribution informationNan Lin0Mengxuan Zheng1Lian Li2Peng Hu3Weifang Gao4Heyang Sun5Chang Xu6Gonglin Yuan7Zi Liang8Yisu Dong9Haibo He10Liying Cui11Qiang Lu12Department of Neurology, Peking Union Medical College HospitalNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdDepartment of Neurology, Peking Union Medical College HospitalDepartment of Neurology, Peking Union Medical College HospitalNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdNetEase Media Technology Co., LtdDepartment of Neurology, Peking Union Medical College HospitalDepartment of Neurology, Peking Union Medical College HospitalAbstract Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this paper, we present a comprehensive EEG dataset containing annotated interictal epileptic data from 84 patients, each contributing 20 minutes of continuous raw EEG recordings, totaling 28 hours. IEDs and states of consciousness (wake/sleep) were meticulously annotated by at least three EEG experts. The IEDs were categorized into five types based on occurrence regions: generalized, frontal, temporal, occipital, and centro-parietal. The dataset includes 2,516 IED epochs and 22,933 non-IED epochs, each 4 seconds long. We developed and validated a VGG-based model for IED detection using this dataset, achieving improved performance with the inclusion of consciousness and/or spatial distribution information. Additionally, our dataset serves as a reliable test set for evaluating and comparing existing IED detection models.https://doi.org/10.1038/s41597-025-04572-1
spellingShingle Nan Lin
Mengxuan Zheng
Lian Li
Peng Hu
Weifang Gao
Heyang Sun
Chang Xu
Gonglin Yuan
Zi Liang
Yisu Dong
Haibo He
Liying Cui
Qiang Lu
An EEG dataset for interictal epileptiform discharge with spatial distribution information
Scientific Data
title An EEG dataset for interictal epileptiform discharge with spatial distribution information
title_full An EEG dataset for interictal epileptiform discharge with spatial distribution information
title_fullStr An EEG dataset for interictal epileptiform discharge with spatial distribution information
title_full_unstemmed An EEG dataset for interictal epileptiform discharge with spatial distribution information
title_short An EEG dataset for interictal epileptiform discharge with spatial distribution information
title_sort eeg dataset for interictal epileptiform discharge with spatial distribution information
url https://doi.org/10.1038/s41597-025-04572-1
work_keys_str_mv AT nanlin aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT mengxuanzheng aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT lianli aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT penghu aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT weifanggao aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT heyangsun aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT changxu aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT gonglinyuan aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT ziliang aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT yisudong aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT haibohe aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT liyingcui aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT qianglu aneegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT nanlin eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT mengxuanzheng eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT lianli eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT penghu eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT weifanggao eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT heyangsun eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT changxu eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT gonglinyuan eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT ziliang eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT yisudong eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT haibohe eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT liyingcui eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation
AT qianglu eegdatasetforinterictalepileptiformdischargewithspatialdistributioninformation