On the Birman–Krein Theorem
It is shown that if $X$ is a unitary operator so that a singular subspace of $U$ is unitarily equivalent to a singular subspace of $UX$ (or $XU$), for each unitary operator $U$, then $X$ is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that incl...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.473/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206224502652928 |
---|---|
author | Bazao, Vanderléa R. de Oliveira, César R. Diaz, Pablo A. |
author_facet | Bazao, Vanderléa R. de Oliveira, César R. Diaz, Pablo A. |
author_sort | Bazao, Vanderléa R. |
collection | DOAJ |
description | It is shown that if $X$ is a unitary operator so that a singular subspace of $U$ is unitarily equivalent to a singular subspace of $UX$ (or $XU$), for each unitary operator $U$, then $X$ is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context. |
format | Article |
id | doaj-art-3cb0cd706a9342fea0a18ae1c80b991e |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-10-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-3cb0cd706a9342fea0a18ae1c80b991e2025-02-07T11:09:55ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G71081108610.5802/crmath.47310.5802/crmath.473On the Birman–Krein TheoremBazao, Vanderléa R.0de Oliveira, César R.1Diaz, Pablo A.2Faculdade de Ciências Exatas e Tecnologias, UFGD, Dourados, MS, 79804-970 BrazilDepartamento de Matemática, UFSCar, São Carlos, SP, 13560-970 BrazilDepartamento de Matemática, UFSCar, São Carlos, SP, 13560-970 BrazilIt is shown that if $X$ is a unitary operator so that a singular subspace of $U$ is unitarily equivalent to a singular subspace of $UX$ (or $XU$), for each unitary operator $U$, then $X$ is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.473/ |
spellingShingle | Bazao, Vanderléa R. de Oliveira, César R. Diaz, Pablo A. On the Birman–Krein Theorem Comptes Rendus. Mathématique |
title | On the Birman–Krein Theorem |
title_full | On the Birman–Krein Theorem |
title_fullStr | On the Birman–Krein Theorem |
title_full_unstemmed | On the Birman–Krein Theorem |
title_short | On the Birman–Krein Theorem |
title_sort | on the birman krein theorem |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.473/ |
work_keys_str_mv | AT bazaovanderlear onthebirmankreintheorem AT deoliveiracesarr onthebirmankreintheorem AT diazpabloa onthebirmankreintheorem |