The local limit theorem for complex valued sequences: the parabolic case

We give a complete expansion, at any accuracy order, for the iterated convolution of a complex valued integrable sequence in one space dimension. The remainders are estimated sharply with generalized Gaussian bounds. The result applies in probability theory for random walks as well as in numerical a...

Full description

Saved in:
Bibliographic Details
Main Authors: Coulombel, Jean-François, Faye, Grégory
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.685/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206144746913792
author Coulombel, Jean-François
Faye, Grégory
author_facet Coulombel, Jean-François
Faye, Grégory
author_sort Coulombel, Jean-François
collection DOAJ
description We give a complete expansion, at any accuracy order, for the iterated convolution of a complex valued integrable sequence in one space dimension. The remainders are estimated sharply with generalized Gaussian bounds. The result applies in probability theory for random walks as well as in numerical analysis for studying the large time behavior of numerical schemes.
format Article
id doaj-art-3f56827bf25641b88a279ee7187222a5
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3f56827bf25641b88a279ee7187222a52025-02-07T11:26:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G121801181810.5802/crmath.68510.5802/crmath.685The local limit theorem for complex valued sequences: the parabolic caseCoulombel, Jean-François0Faye, Grégory1Institut de Mathématiques de Toulouse – UMR 5219, Université de Toulouse, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 , FranceInstitut de Mathématiques de Toulouse – UMR 5219, Université de Toulouse, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 , FranceWe give a complete expansion, at any accuracy order, for the iterated convolution of a complex valued integrable sequence in one space dimension. The remainders are estimated sharply with generalized Gaussian bounds. The result applies in probability theory for random walks as well as in numerical analysis for studying the large time behavior of numerical schemes.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.685/Convolutionasymptotic expansionstabilitylocal limit theorem
spellingShingle Coulombel, Jean-François
Faye, Grégory
The local limit theorem for complex valued sequences: the parabolic case
Comptes Rendus. Mathématique
Convolution
asymptotic expansion
stability
local limit theorem
title The local limit theorem for complex valued sequences: the parabolic case
title_full The local limit theorem for complex valued sequences: the parabolic case
title_fullStr The local limit theorem for complex valued sequences: the parabolic case
title_full_unstemmed The local limit theorem for complex valued sequences: the parabolic case
title_short The local limit theorem for complex valued sequences: the parabolic case
title_sort local limit theorem for complex valued sequences the parabolic case
topic Convolution
asymptotic expansion
stability
local limit theorem
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.685/
work_keys_str_mv AT coulombeljeanfrancois thelocallimittheoremforcomplexvaluedsequencestheparaboliccase
AT fayegregory thelocallimittheoremforcomplexvaluedsequencestheparaboliccase
AT coulombeljeanfrancois locallimittheoremforcomplexvaluedsequencestheparaboliccase
AT fayegregory locallimittheoremforcomplexvaluedsequencestheparaboliccase