On nonparametric conditional quantile estimation for non-stationary spatial processes

A kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed for a prediction goal at a non-observed location of the underlying process. The originality is based on the ability to take into account some local spatial dependency. Large sample properties based on...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanga, Serge Hippolyte Arnaud, Hili, Ouagnina, Dabo-Niang, Sophie
Format: Article
Language:English
Published: Académie des sciences 2023-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.400/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206226106974208
author Kanga, Serge Hippolyte Arnaud
Hili, Ouagnina
Dabo-Niang, Sophie
author_facet Kanga, Serge Hippolyte Arnaud
Hili, Ouagnina
Dabo-Niang, Sophie
author_sort Kanga, Serge Hippolyte Arnaud
collection DOAJ
description A kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed for a prediction goal at a non-observed location of the underlying process. The originality is based on the ability to take into account some local spatial dependency. Large sample properties based on almost complete and $L^{q}$-consistencies of the estimator are established.
format Article
id doaj-art-45df62afb5ae4ee381bf2a2f31a1d0f1
institution Kabale University
issn 1778-3569
language English
publishDate 2023-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-45df62afb5ae4ee381bf2a2f31a1d0f12025-02-07T11:08:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-07-01361G584785210.5802/crmath.40010.5802/crmath.400On nonparametric conditional quantile estimation for non-stationary spatial processesKanga, Serge Hippolyte Arnaud0Hili, Ouagnina1Dabo-Niang, Sophie2UMRI Mathématiques et Nouvelles Technologies de l’Information, Institut National Polytechnique Félix Houphouët Boigny, BP 1093 Yamoussoukro, Côte d’IvoireUMRI Mathématiques et Nouvelles Technologies de l’Information, Institut National Polytechnique Félix Houphouët Boigny, BP 1093 Yamoussoukro, Côte d’IvoireLaboratoire Paul Painlevé UMR CNRS 8524, INRIA-MODAL Université de Lille, FranceA kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed for a prediction goal at a non-observed location of the underlying process. The originality is based on the ability to take into account some local spatial dependency. Large sample properties based on almost complete and $L^{q}$-consistencies of the estimator are established.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.400/
spellingShingle Kanga, Serge Hippolyte Arnaud
Hili, Ouagnina
Dabo-Niang, Sophie
On nonparametric conditional quantile estimation for non-stationary spatial processes
Comptes Rendus. Mathématique
title On nonparametric conditional quantile estimation for non-stationary spatial processes
title_full On nonparametric conditional quantile estimation for non-stationary spatial processes
title_fullStr On nonparametric conditional quantile estimation for non-stationary spatial processes
title_full_unstemmed On nonparametric conditional quantile estimation for non-stationary spatial processes
title_short On nonparametric conditional quantile estimation for non-stationary spatial processes
title_sort on nonparametric conditional quantile estimation for non stationary spatial processes
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.400/
work_keys_str_mv AT kangasergehippolytearnaud onnonparametricconditionalquantileestimationfornonstationaryspatialprocesses
AT hiliouagnina onnonparametricconditionalquantileestimationfornonstationaryspatialprocesses
AT daboniangsophie onnonparametricconditionalquantileestimationfornonstationaryspatialprocesses