On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-12-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206226349195264 |
---|---|
author | Caspers, Martijn |
author_facet | Caspers, Martijn |
author_sort | Caspers, Martijn |
collection | DOAJ |
description | Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras. |
format | Article |
id | doaj-art-474dd760d3214eb9b4987b921baa21c2 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-12-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-474dd760d3214eb9b4987b921baa21c22025-02-07T11:12:14ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-12-01361G111711171610.5802/crmath.48910.5802/crmath.489On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variablesCaspers, Martijn0TU Delft, EWI/DIAM, P.O.Box 5031, 2600 GA Delft, The NetherlandsLet $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/$q$-Gaussian von Neumann algebrasAkemann–Ostrand property |
spellingShingle | Caspers, Martijn On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables Comptes Rendus. Mathématique $q$-Gaussian von Neumann algebras Akemann–Ostrand property |
title | On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables |
title_full | On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables |
title_fullStr | On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables |
title_full_unstemmed | On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables |
title_short | On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables |
title_sort | on the isomorphism class of q gaussian w ast algebras for infinite variables |
topic | $q$-Gaussian von Neumann algebras Akemann–Ostrand property |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/ |
work_keys_str_mv | AT caspersmartijn ontheisomorphismclassofqgaussianwastalgebrasforinfinitevariables |