On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables

Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic...

Full description

Saved in:
Bibliographic Details
Main Author: Caspers, Martijn
Format: Article
Language:English
Published: Académie des sciences 2023-12-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206226349195264
author Caspers, Martijn
author_facet Caspers, Martijn
author_sort Caspers, Martijn
collection DOAJ
description Let $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.
format Article
id doaj-art-474dd760d3214eb9b4987b921baa21c2
institution Kabale University
issn 1778-3569
language English
publishDate 2023-12-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-474dd760d3214eb9b4987b921baa21c22025-02-07T11:12:14ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-12-01361G111711171610.5802/crmath.48910.5802/crmath.489On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variablesCaspers, Martijn0TU Delft, EWI/DIAM, P.O.Box 5031, 2600 GA Delft, The NetherlandsLet $M_q(H_{\mathbb{R}})$ be the $q$-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space $H_{\mathbb{R}}$ where $-1 < q < 1$. We show that $M_q(H_{\mathbb{R}}) \lnot \simeq M_0(H_{\mathbb{R}})$ for $-1 < q \ne 0 < 1$. The C$^\ast $-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/$q$-Gaussian von Neumann algebrasAkemann–Ostrand property
spellingShingle Caspers, Martijn
On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
Comptes Rendus. Mathématique
$q$-Gaussian von Neumann algebras
Akemann–Ostrand property
title On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
title_full On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
title_fullStr On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
title_full_unstemmed On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
title_short On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
title_sort on the isomorphism class of q gaussian w ast algebras for infinite variables
topic $q$-Gaussian von Neumann algebras
Akemann–Ostrand property
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/
work_keys_str_mv AT caspersmartijn ontheisomorphismclassofqgaussianwastalgebrasforinfinitevariables