Unitary $L^{p+}$-representations of almost automorphism groups

Let $G$ be a locally compact group with an open subgroup $H$ with the Kunze–Stein property, and let $\pi $ be a unitary representation of $H$. We show that the representation $\widetilde{\pi }$ of $G$ induced from $\pi $ is an $L^{p+}$-representation if and only if $\pi $ is an $L^{p+}$-representati...

Full description

Saved in:
Bibliographic Details
Main Authors: Dabeler, Antje, Mai Elkiær, Emilie, Gerasimova, Maria, de Laat, Tim
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.549/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206226581979136
author Dabeler, Antje
Mai Elkiær, Emilie
Gerasimova, Maria
de Laat, Tim
author_facet Dabeler, Antje
Mai Elkiær, Emilie
Gerasimova, Maria
de Laat, Tim
author_sort Dabeler, Antje
collection DOAJ
description Let $G$ be a locally compact group with an open subgroup $H$ with the Kunze–Stein property, and let $\pi $ be a unitary representation of $H$. We show that the representation $\widetilde{\pi }$ of $G$ induced from $\pi $ is an $L^{p+}$-representation if and only if $\pi $ is an $L^{p+}$-representation. We deduce the following consequence for a large natural class of almost automorphism groups $G$ of trees: For every $p \in (2,\infty )$, the group $G$ has a unitary $L^{p+}$-representation that is not an $L^{q+}$-representation for any $q < p$. This in particular applies to the Neretin groups.
format Article
id doaj-art-488e9faa5c7748619294263939437baa
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-488e9faa5c7748619294263939437baa2025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G324524910.5802/crmath.54910.5802/crmath.549Unitary $L^{p+}$-representations of almost automorphism groupsDabeler, Antje0Mai Elkiær, Emilie1Gerasimova, Maria2de Laat, Tim3University of Münster, Mathematical Institute, Einsteinstraße 62, 48149 Münster, Germany.Department of Mathematics, University of Oslo, NorwayUniversity of Münster, Mathematical Institute, Einsteinstraße 62, 48149 Münster, Germany.University of Münster, Mathematical Institute, Einsteinstraße 62, 48149 Münster, Germany.Let $G$ be a locally compact group with an open subgroup $H$ with the Kunze–Stein property, and let $\pi $ be a unitary representation of $H$. We show that the representation $\widetilde{\pi }$ of $G$ induced from $\pi $ is an $L^{p+}$-representation if and only if $\pi $ is an $L^{p+}$-representation. We deduce the following consequence for a large natural class of almost automorphism groups $G$ of trees: For every $p \in (2,\infty )$, the group $G$ has a unitary $L^{p+}$-representation that is not an $L^{q+}$-representation for any $q < p$. This in particular applies to the Neretin groups.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.549/
spellingShingle Dabeler, Antje
Mai Elkiær, Emilie
Gerasimova, Maria
de Laat, Tim
Unitary $L^{p+}$-representations of almost automorphism groups
Comptes Rendus. Mathématique
title Unitary $L^{p+}$-representations of almost automorphism groups
title_full Unitary $L^{p+}$-representations of almost automorphism groups
title_fullStr Unitary $L^{p+}$-representations of almost automorphism groups
title_full_unstemmed Unitary $L^{p+}$-representations of almost automorphism groups
title_short Unitary $L^{p+}$-representations of almost automorphism groups
title_sort unitary l p representations of almost automorphism groups
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.549/
work_keys_str_mv AT dabelerantje unitarylprepresentationsofalmostautomorphismgroups
AT maielkiæremilie unitarylprepresentationsofalmostautomorphismgroups
AT gerasimovamaria unitarylprepresentationsofalmostautomorphismgroups
AT delaattim unitarylprepresentationsofalmostautomorphismgroups