Beta-Bazilevič Function
In this paper, we introduce a relatively new class, $\mathcal{\mathcal{B}}_{1}^\beta(\alpha)$, namely the class of Beta-Bazilevi\v{c} function is generated by the function Bazilevi\v{c} $\mathcal{B}_{1}(\alpha)$. We introduce the class in question by constructing the Alpha-Convex function, $\mathcal...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2024-03-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_709284_a224e0483a1dfcc3a1b3cd17429f06c1.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823859391080693760 |
---|---|
author | Sa'adatul Fitri Mohamad Muslikh |
author_facet | Sa'adatul Fitri Mohamad Muslikh |
author_sort | Sa'adatul Fitri |
collection | DOAJ |
description | In this paper, we introduce a relatively new class, $\mathcal{\mathcal{B}}_{1}^\beta(\alpha)$, namely the class of Beta-Bazilevi\v{c} function is generated by the function Bazilevi\v{c} $\mathcal{B}_{1}(\alpha)$. We introduce the class in question by constructing the Alpha-Convex function, $\mathcal{M}(\alpha)$, introduced by Miller et al. \cite{15}. Using Lemmas of function with positive real part, we were given a sharp estimate of coefficient problems. The coefficient problems to be solved are the modulus of initial coefficients $f$, the modulus of inverse coefficients $f^{-1}$, the modulus of the Logarithmic coefficients $\log \frac{f(z)}{z}$, the Fekete-Szeg\"{o} problem and the second Hankel determinant problem. |
format | Article |
id | doaj-art-48e37da731984f85a3922f70c9b37100 |
institution | Kabale University |
issn | 2322-5807 2423-3900 |
language | English |
publishDate | 2024-03-01 |
publisher | University of Maragheh |
record_format | Article |
series | Sahand Communications in Mathematical Analysis |
spelling | doaj-art-48e37da731984f85a3922f70c9b371002025-02-11T05:24:46ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002024-03-0121217919310.22130/scma.2023.2004270.1351709284Beta-Bazilevič FunctionSa'adatul Fitri0Mohamad Muslikh1Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, East Java 65145, Indonesia.Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, East Java 65145, Indonesia.In this paper, we introduce a relatively new class, $\mathcal{\mathcal{B}}_{1}^\beta(\alpha)$, namely the class of Beta-Bazilevi\v{c} function is generated by the function Bazilevi\v{c} $\mathcal{B}_{1}(\alpha)$. We introduce the class in question by constructing the Alpha-Convex function, $\mathcal{M}(\alpha)$, introduced by Miller et al. \cite{15}. Using Lemmas of function with positive real part, we were given a sharp estimate of coefficient problems. The coefficient problems to be solved are the modulus of initial coefficients $f$, the modulus of inverse coefficients $f^{-1}$, the modulus of the Logarithmic coefficients $\log \frac{f(z)}{z}$, the Fekete-Szeg\"{o} problem and the second Hankel determinant problem.https://scma.maragheh.ac.ir/article_709284_a224e0483a1dfcc3a1b3cd17429f06c1.pdfbazilevic functionalpha-convex functionfunction with positive real partcoefficient |
spellingShingle | Sa'adatul Fitri Mohamad Muslikh Beta-Bazilevič Function Sahand Communications in Mathematical Analysis bazilevic function alpha-convex function function with positive real part coefficient |
title | Beta-Bazilevič Function |
title_full | Beta-Bazilevič Function |
title_fullStr | Beta-Bazilevič Function |
title_full_unstemmed | Beta-Bazilevič Function |
title_short | Beta-Bazilevič Function |
title_sort | beta bazilevic function |
topic | bazilevic function alpha-convex function function with positive real part coefficient |
url | https://scma.maragheh.ac.ir/article_709284_a224e0483a1dfcc3a1b3cd17429f06c1.pdf |
work_keys_str_mv | AT saadatulfitri betabazilevicfunction AT mohamadmuslikh betabazilevicfunction |