Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
Let $(V,E)$ be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation \[ v_t-\Delta v=v^{-p-2}-v^p, \;(x,t)\in V \times \mathbb{R}, \] and of (sign-changing) solutions of the Ginzburg-Landau system \[ {\left\lbrace \begin{array}{ll} u...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.653/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $(V,E)$ be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation
\[ v_t-\Delta v=v^{-p-2}-v^p, \;(x,t)\in V \times \mathbb{R}, \]
and of (sign-changing) solutions of the Ginzburg-Landau system
\[ {\left\lbrace \begin{array}{ll} u_t-\Delta u=u-u^3-\lambda uv^2 , \;(x,t)\in V \times \mathbb{R},\\ v_t-\Delta v=v-v^3-\lambda vu^2, \;(x,t)\in V \times \mathbb{R}, \end{array}\right.} \]
where $p>0$, $\lambda >0$ and $\Delta $ is the standard discrete graph Laplacian. Firstly, we prove that any positive solution $v$ of the Lichnerowicz equation satisfies $v\ge 1$. Moreover, if we assume the boundedness of positive solution $v$, then it must be trivial, i.e $v\equiv 1$. We also construct a nontrivial positive solution of the Lichnerowicz equation to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions of the Ginzburg-Landau system depending on the range of $\lambda $. |
---|---|
ISSN: | 1778-3569 |