Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay

We study the Euler-Bernoulli equations with time delay: utt+Δ2u−g1∗Δ2u+g2∗Δu+μ1ut(x,t)∣ut(x,t)∣m−2+μ2ut(x,t−τ)∣ut(x,t−τ)∣m−2=f(u),{u}_{tt}+{\Delta }^{2}u-{g}_{1}\ast {\Delta }^{2}u+{g}_{2}\ast \Delta u+{\mu }_{1}{u}_{t}\left(x,t){| {u}_{t}\left(x,t)| }^{m-2}+{\mu }_{2}{u}_{t}\left(x,t-\tau ){| {u}_{...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Rongrui, Gao Yunlong, She Lianbing
Format: Article
Language:English
Published: De Gruyter 2025-02-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2024-0124
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823860488691253248
author Lin Rongrui
Gao Yunlong
She Lianbing
author_facet Lin Rongrui
Gao Yunlong
She Lianbing
author_sort Lin Rongrui
collection DOAJ
description We study the Euler-Bernoulli equations with time delay: utt+Δ2u−g1∗Δ2u+g2∗Δu+μ1ut(x,t)∣ut(x,t)∣m−2+μ2ut(x,t−τ)∣ut(x,t−τ)∣m−2=f(u),{u}_{tt}+{\Delta }^{2}u-{g}_{1}\ast {\Delta }^{2}u+{g}_{2}\ast \Delta u+{\mu }_{1}{u}_{t}\left(x,t){| {u}_{t}\left(x,t)| }^{m-2}+{\mu }_{2}{u}_{t}\left(x,t-\tau ){| {u}_{t}\left(x,t-\tau )| }^{m-2}=f\left(u), where τ\tau represents the time delay. We exhibit the blow-up behavior of solutions with both positive and nonpositive initial energy for the Euler-Bernoulli equations involving time delay.
format Article
id doaj-art-4a7c2b30a880487882c042e6eac2a974
institution Kabale University
issn 2391-5455
language English
publishDate 2025-02-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-4a7c2b30a880487882c042e6eac2a9742025-02-10T13:24:36ZengDe GruyterOpen Mathematics2391-54552025-02-0123137238810.1515/math-2024-0124Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delayLin Rongrui0Gao Yunlong1She Lianbing2School of Mathematics and Statistics, Liupanshui Normal University, Liupanshui, Guizhou 553004, P. R. ChinaSchool of Mathematics and Statistics, Liupanshui Normal University, Liupanshui, Guizhou 553004, P. R. ChinaSchool of Mathematics and Statistics, Fuyang Normal University, Fuyang, Anhui 236037, P. R. ChinaWe study the Euler-Bernoulli equations with time delay: utt+Δ2u−g1∗Δ2u+g2∗Δu+μ1ut(x,t)∣ut(x,t)∣m−2+μ2ut(x,t−τ)∣ut(x,t−τ)∣m−2=f(u),{u}_{tt}+{\Delta }^{2}u-{g}_{1}\ast {\Delta }^{2}u+{g}_{2}\ast \Delta u+{\mu }_{1}{u}_{t}\left(x,t){| {u}_{t}\left(x,t)| }^{m-2}+{\mu }_{2}{u}_{t}\left(x,t-\tau ){| {u}_{t}\left(x,t-\tau )| }^{m-2}=f\left(u), where τ\tau represents the time delay. We exhibit the blow-up behavior of solutions with both positive and nonpositive initial energy for the Euler-Bernoulli equations involving time delay.https://doi.org/10.1515/math-2024-0124euler-bernoulli equationblow-upnonlinear time delay35l0535b4493d15
spellingShingle Lin Rongrui
Gao Yunlong
She Lianbing
Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
Open Mathematics
euler-bernoulli equation
blow-up
nonlinear time delay
35l05
35b44
93d15
title Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
title_full Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
title_fullStr Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
title_full_unstemmed Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
title_short Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
title_sort blow up of solutions for euler bernoulli equation with nonlinear time delay
topic euler-bernoulli equation
blow-up
nonlinear time delay
35l05
35b44
93d15
url https://doi.org/10.1515/math-2024-0124
work_keys_str_mv AT linrongrui blowupofsolutionsforeulerbernoulliequationwithnonlineartimedelay
AT gaoyunlong blowupofsolutionsforeulerbernoulliequationwithnonlineartimedelay
AT shelianbing blowupofsolutionsforeulerbernoulliequationwithnonlineartimedelay