The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties w...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-05-01
|
Series: | Comptes Rendus. Mécanique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825205999357657088 |
---|---|
author | Marcot, Quentin Fourest, Thomas Langrand, Bertrand Pierron, Fabrice |
author_facet | Marcot, Quentin Fourest, Thomas Langrand, Bertrand Pierron, Fabrice |
author_sort | Marcot, Quentin |
collection | DOAJ |
description | This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process. |
format | Article |
id | doaj-art-4ff8e14fb26347f09b7129605b422026 |
institution | Kabale University |
issn | 1873-7234 |
language | English |
publishDate | 2023-05-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mécanique |
spelling | doaj-art-4ff8e14fb26347f09b7129605b4220262025-02-07T13:46:52ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-05-01351G117119910.5802/crmeca.18110.5802/crmeca.181The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materialsMarcot, Quentin0Fourest, Thomas1https://orcid.org/0000-0002-5522-6950Langrand, Bertrand2https://orcid.org/0000-0003-2799-7616Pierron, Fabrice3https://orcid.org/0000-0003-2813-4994DMAS, ONERA, F-59014, Lille, France; Univ. Polytechnique Hauts-de-France, LAMIH, UMR CNRS 8201, F-59313 Valenciennes, FranceDMAS, ONERA, F-59014, Lille, FranceDMAS, ONERA, F-59014, Lille, France; Univ. Polytechnique Hauts-de-France, LAMIH, UMR CNRS 8201, F-59313 Valenciennes, FranceFaculty of Engineering & Physical Sciences - University of Southampton, Highfield Road SO171BJ, Southampton - UK; MatchID NV, Leiekaai 25A, 9000 Ghent - BelgiumThis work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/IdentificationVirtual Fields MethodLinear viscoelasticityLaplace transformInverse Laplace transform |
spellingShingle | Marcot, Quentin Fourest, Thomas Langrand, Bertrand Pierron, Fabrice The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials Comptes Rendus. Mécanique Identification Virtual Fields Method Linear viscoelasticity Laplace transform Inverse Laplace transform |
title | The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials |
title_full | The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials |
title_fullStr | The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials |
title_full_unstemmed | The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials |
title_short | The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials |
title_sort | laplace virtual fields method for the direct extraction of viscoelastic properties of materials |
topic | Identification Virtual Fields Method Linear viscoelasticity Laplace transform Inverse Laplace transform |
url | https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/ |
work_keys_str_mv | AT marcotquentin thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT fourestthomas thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT langrandbertrand thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT pierronfabrice thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT marcotquentin laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT fourestthomas laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT langrandbertrand laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials AT pierronfabrice laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials |