The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials

This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties w...

Full description

Saved in:
Bibliographic Details
Main Authors: Marcot, Quentin, Fourest, Thomas, Langrand, Bertrand, Pierron, Fabrice
Format: Article
Language:English
Published: Académie des sciences 2023-05-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205999357657088
author Marcot, Quentin
Fourest, Thomas
Langrand, Bertrand
Pierron, Fabrice
author_facet Marcot, Quentin
Fourest, Thomas
Langrand, Bertrand
Pierron, Fabrice
author_sort Marcot, Quentin
collection DOAJ
description This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process.
format Article
id doaj-art-4ff8e14fb26347f09b7129605b422026
institution Kabale University
issn 1873-7234
language English
publishDate 2023-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-4ff8e14fb26347f09b7129605b4220262025-02-07T13:46:52ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-05-01351G117119910.5802/crmeca.18110.5802/crmeca.181The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materialsMarcot, Quentin0Fourest, Thomas1https://orcid.org/0000-0002-5522-6950Langrand, Bertrand2https://orcid.org/0000-0003-2799-7616Pierron, Fabrice3https://orcid.org/0000-0003-2813-4994DMAS, ONERA, F-59014, Lille, France; Univ. Polytechnique Hauts-de-France, LAMIH, UMR CNRS 8201, F-59313 Valenciennes, FranceDMAS, ONERA, F-59014, Lille, FranceDMAS, ONERA, F-59014, Lille, France; Univ. Polytechnique Hauts-de-France, LAMIH, UMR CNRS 8201, F-59313 Valenciennes, FranceFaculty of Engineering & Physical Sciences - University of Southampton, Highfield Road SO171BJ, Southampton - UK; MatchID NV, Leiekaai 25A, 9000 Ghent - BelgiumThis work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/IdentificationVirtual Fields MethodLinear viscoelasticityLaplace transformInverse Laplace transform
spellingShingle Marcot, Quentin
Fourest, Thomas
Langrand, Bertrand
Pierron, Fabrice
The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
Comptes Rendus. Mécanique
Identification
Virtual Fields Method
Linear viscoelasticity
Laplace transform
Inverse Laplace transform
title The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
title_full The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
title_fullStr The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
title_full_unstemmed The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
title_short The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
title_sort laplace virtual fields method for the direct extraction of viscoelastic properties of materials
topic Identification
Virtual Fields Method
Linear viscoelasticity
Laplace transform
Inverse Laplace transform
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/
work_keys_str_mv AT marcotquentin thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT fourestthomas thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT langrandbertrand thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT pierronfabrice thelaplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT marcotquentin laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT fourestthomas laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT langrandbertrand laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials
AT pierronfabrice laplacevirtualfieldsmethodforthedirectextractionofviscoelasticpropertiesofmaterials