Stable domains for higher order elliptic operators

This paper is devoted to prove that any domain satisfying a $(\delta _0,r_0)$-capacitary condition of first order is automatically $(m,p)$-stable for all $m\geqslant 1$ and $p> 1$, and for any dimension $N\geqslant 1$. In particular, this includes regular enough domains such as $\mathscr{C}^1$-do...

Full description

Saved in:
Bibliographic Details
Main Authors: Grosjean, Jean-François, Lemenant, Antoine, Mougenot, Rémy
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.630/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206148974772224
author Grosjean, Jean-François
Lemenant, Antoine
Mougenot, Rémy
author_facet Grosjean, Jean-François
Lemenant, Antoine
Mougenot, Rémy
author_sort Grosjean, Jean-François
collection DOAJ
description This paper is devoted to prove that any domain satisfying a $(\delta _0,r_0)$-capacitary condition of first order is automatically $(m,p)$-stable for all $m\geqslant 1$ and $p> 1$, and for any dimension $N\geqslant 1$. In particular, this includes regular enough domains such as $\mathscr{C}^1$-domains, Lipschitz domains, Reifenberg-flat domains, but is sufficiently weak to also include cusp points. Our result extends some of the results of Hayouni and Pierre valid only for $N=2,3$, and partially extends the results of Bucur and Zolésio for higher order operators, with a different and simpler proof.
format Article
id doaj-art-502d717ab25941868957925fe2e243cb
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-502d717ab25941868957925fe2e243cb2025-02-07T11:23:31ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G101189120310.5802/crmath.63010.5802/crmath.630Stable domains for higher order elliptic operatorsGrosjean, Jean-François0Lemenant, Antoine1Mougenot, Rémy 2Université de Lorraine, CNRS, IECL, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, IECL, F-54000 Nancy, FranceUniversité de Lorraine, CNRS, IECL, F-54000 Nancy, FranceThis paper is devoted to prove that any domain satisfying a $(\delta _0,r_0)$-capacitary condition of first order is automatically $(m,p)$-stable for all $m\geqslant 1$ and $p> 1$, and for any dimension $N\geqslant 1$. In particular, this includes regular enough domains such as $\mathscr{C}^1$-domains, Lipschitz domains, Reifenberg-flat domains, but is sufficiently weak to also include cusp points. Our result extends some of the results of Hayouni and Pierre valid only for $N=2,3$, and partially extends the results of Bucur and Zolésio for higher order operators, with a different and simpler proof.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.630/Capacity, stable domains$\gamma _m$-convergenceMosco-convergenceshape optimisation
spellingShingle Grosjean, Jean-François
Lemenant, Antoine
Mougenot, Rémy
Stable domains for higher order elliptic operators
Comptes Rendus. Mathématique
Capacity, stable domains
$\gamma _m$-convergence
Mosco-convergence
shape optimisation
title Stable domains for higher order elliptic operators
title_full Stable domains for higher order elliptic operators
title_fullStr Stable domains for higher order elliptic operators
title_full_unstemmed Stable domains for higher order elliptic operators
title_short Stable domains for higher order elliptic operators
title_sort stable domains for higher order elliptic operators
topic Capacity, stable domains
$\gamma _m$-convergence
Mosco-convergence
shape optimisation
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.630/
work_keys_str_mv AT grosjeanjeanfrancois stabledomainsforhigherorderellipticoperators
AT lemenantantoine stabledomainsforhigherorderellipticoperators
AT mougenotremy stabledomainsforhigherorderellipticoperators