Torus quotient of the Grassmannian $G_{n,2n}$

Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$....

Full description

Saved in:
Bibliographic Details
Main Authors: Nayek, Arpita, Saha, Pinakinath
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206228545961984
author Nayek, Arpita
Saha, Pinakinath
author_facet Nayek, Arpita
Saha, Pinakinath
author_sort Nayek, Arpita
collection DOAJ
description Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$.
format Article
id doaj-art-50f56942386e4d6a84241c81adc1092e
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-50f56942386e4d6a84241c81adc1092e2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91499150910.5802/crmath.50110.5802/crmath.501Torus quotient of the Grassmannian $G_{n,2n}$Nayek, Arpita0Saha, Pinakinath1Department of Mathematics, IIT Bombay, Powai, Mumbai 400076, IndiaDepartment of Mathematics, IIT Bombay, Powai, Mumbai 400076, IndiaLet $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/GrassmannianLine bundleSemi-stable pointGIT-quotientProjective normality
spellingShingle Nayek, Arpita
Saha, Pinakinath
Torus quotient of the Grassmannian $G_{n,2n}$
Comptes Rendus. Mathématique
Grassmannian
Line bundle
Semi-stable point
GIT-quotient
Projective normality
title Torus quotient of the Grassmannian $G_{n,2n}$
title_full Torus quotient of the Grassmannian $G_{n,2n}$
title_fullStr Torus quotient of the Grassmannian $G_{n,2n}$
title_full_unstemmed Torus quotient of the Grassmannian $G_{n,2n}$
title_short Torus quotient of the Grassmannian $G_{n,2n}$
title_sort torus quotient of the grassmannian g n 2n
topic Grassmannian
Line bundle
Semi-stable point
GIT-quotient
Projective normality
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/
work_keys_str_mv AT nayekarpita torusquotientofthegrassmanniangn2n
AT sahapinakinath torusquotientofthegrassmanniangn2n