Torus quotient of the Grassmannian $G_{n,2n}$
Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206228545961984 |
---|---|
author | Nayek, Arpita Saha, Pinakinath |
author_facet | Nayek, Arpita Saha, Pinakinath |
author_sort | Nayek, Arpita |
collection | DOAJ |
description | Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$. |
format | Article |
id | doaj-art-50f56942386e4d6a84241c81adc1092e |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-50f56942386e4d6a84241c81adc1092e2025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91499150910.5802/crmath.50110.5802/crmath.501Torus quotient of the Grassmannian $G_{n,2n}$Nayek, Arpita0Saha, Pinakinath1Department of Mathematics, IIT Bombay, Powai, Mumbai 400076, IndiaDepartment of Mathematics, IIT Bombay, Powai, Mumbai 400076, IndiaLet $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/GrassmannianLine bundleSemi-stable pointGIT-quotientProjective normality |
spellingShingle | Nayek, Arpita Saha, Pinakinath Torus quotient of the Grassmannian $G_{n,2n}$ Comptes Rendus. Mathématique Grassmannian Line bundle Semi-stable point GIT-quotient Projective normality |
title | Torus quotient of the Grassmannian $G_{n,2n}$ |
title_full | Torus quotient of the Grassmannian $G_{n,2n}$ |
title_fullStr | Torus quotient of the Grassmannian $G_{n,2n}$ |
title_full_unstemmed | Torus quotient of the Grassmannian $G_{n,2n}$ |
title_short | Torus quotient of the Grassmannian $G_{n,2n}$ |
title_sort | torus quotient of the grassmannian g n 2n |
topic | Grassmannian Line bundle Semi-stable point GIT-quotient Projective normality |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/ |
work_keys_str_mv | AT nayekarpita torusquotientofthegrassmanniangn2n AT sahapinakinath torusquotientofthegrassmanniangn2n |