From homogeneous metric spaces to Lie groups
We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive $ \epsilon $, each...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.608/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive $ \epsilon $, each such space is $ (1,\epsilon ) $-quasi-isometric to a connected metric Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group.Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie groups may be made isometric if and only if they have the same real-shadow.Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation. |
---|---|
ISSN: | 1778-3569 |