From homogeneous metric spaces to Lie groups

We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive $ \epsilon $, each...

Full description

Saved in:
Bibliographic Details
Main Authors: Cowling, Michael G., Kivioja, Ville, Le Donne, Enrico, Nicolussi Golo, Sebastiano, Ottazzi, Alessandro
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.608/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive $ \epsilon $, each such space is $ (1,\epsilon ) $-quasi-isometric to a connected metric Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group.Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie groups may be made isometric if and only if they have the same real-shadow.Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation.
ISSN:1778-3569