Applying in machine learning and deep learning in finance industry: A case study on repayment prediction

In the current era marked by the proliferation of peer-to-peer lending platforms, the imperative of ascertaining borrowers’ capacity to honor their financial obligations has assumed paramount significance. This endeavor transcends mere risk mitigation for individual investors, extending to the ident...

Full description

Saved in:
Bibliographic Details
Main Authors: Nguyễn Phát Đạt, Hồ Mai Minh Nhật, Trương Công Vinh, Lê Quang Chấn Phong, Lê Hoành Sử
Format: Article
Language:Vietnamese
Published: TẠP CHÍ KHOA HỌC ĐẠI HỌC MỞ THÀNH PHỐ HỒ CHÍ MINH 2024-12-01
Series:Tạp chí Khoa học Đại học Mở Thành phố Hồ Chí Minh - Kinh tế và Quản trị kinh doanh
Subjects:
Online Access:https://journalofscience.ou.edu.vn/index.php/econ-vi/article/view/3828
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861251880517632
author Nguyễn Phát Đạt
Hồ Mai Minh Nhật
Trương Công Vinh
Lê Quang Chấn Phong
Lê Hoành Sử
author_facet Nguyễn Phát Đạt
Hồ Mai Minh Nhật
Trương Công Vinh
Lê Quang Chấn Phong
Lê Hoành Sử
author_sort Nguyễn Phát Đạt
collection DOAJ
description In the current era marked by the proliferation of peer-to-peer lending platforms, the imperative of ascertaining borrowers’ capacity to honor their financial obligations has assumed paramount significance. This endeavor transcends mere risk mitigation for individual investors, extending to the identification of judicious investment prospects. The present inquiry advocates for the adoption of sophisticated computational methodologies, including machine learning and deep learning, to analyze borrowers’ behavioral patterns, demographic profiles, and credit histories, thus facilitating the prognostication of loan repayment likelihood. Employed techniques encompass Logistic Regression (LR), K-Nearest Neighbor (KNN), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), in conjunction with deep learning architectures such as Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN). Following methodological refinement, it becomes apparent that ensemble learning approaches, exemplified by XGB and LGBM, exhibit markedly superior predictive performance, surpassing conventional models with an accuracy rate exceeding 85%. Salient predictors include interest rates, credit ratings, and loan amounts. It is anticipated that the findings of this investigation will furnish investors with a potent analytical toolset for discerning and selecting loan portfolios, thereby fostering greater transparency and efficiency within the peer-to-peer lending ecosystem.
format Article
id doaj-art-54e87c82f7ba4becb85472db6a0aa02e
institution Kabale University
issn 2734-9306
2734-9578
language Vietnamese
publishDate 2024-12-01
publisher TẠP CHÍ KHOA HỌC ĐẠI HỌC MỞ THÀNH PHỐ HỒ CHÍ MINH
record_format Article
series Tạp chí Khoa học Đại học Mở Thành phố Hồ Chí Minh - Kinh tế và Quản trị kinh doanh
spelling doaj-art-54e87c82f7ba4becb85472db6a0aa02e2025-02-10T04:17:41ZvieTẠP CHÍ KHOA HỌC ĐẠI HỌC MỞ THÀNH PHỐ HỒ CHÍ MINHTạp chí Khoa học Đại học Mở Thành phố Hồ Chí Minh - Kinh tế và Quản trị kinh doanh2734-93062734-95782024-12-01201355310.46223/HCMCOUJS.econ.vi.20.1.3828.20252321Applying in machine learning and deep learning in finance industry: A case study on repayment predictionNguyễn Phát Đạt0Hồ Mai Minh Nhật1Trương Công Vinh2Lê Quang Chấn Phong3Lê Hoành Sử4Trường Đại Học Kinh tế - Luật, Thành phố Hồ Chí Minh Đại học Quốc Gia Thành Phố Hồ Chí Minh, Thành phố Hồ Chí MinhTrường Đại Học Kinh tế - Luật, Thành phố Hồ Chí Minh Đại học Quốc Gia Thành Phố Hồ Chí Minh, Thành phố Hồ Chí MinhTrường Đại Học Kinh tế - Luật, Thành phố Hồ Chí Minh Đại học Quốc Gia Thành Phố Hồ Chí Minh, Thành phố Hồ Chí MinhTrường Đại Học Kinh tế - Luật, Thành phố Hồ Chí Minh Đại học Quốc Gia Thành Phố Hồ Chí Minh, Thành phố Hồ Chí MinhTrường Đại Học Kinh tế - Luật, Thành phố Hồ Chí Minh Đại học Quốc Gia Thành Phố Hồ Chí Minh, Thành phố Hồ Chí MinhIn the current era marked by the proliferation of peer-to-peer lending platforms, the imperative of ascertaining borrowers’ capacity to honor their financial obligations has assumed paramount significance. This endeavor transcends mere risk mitigation for individual investors, extending to the identification of judicious investment prospects. The present inquiry advocates for the adoption of sophisticated computational methodologies, including machine learning and deep learning, to analyze borrowers’ behavioral patterns, demographic profiles, and credit histories, thus facilitating the prognostication of loan repayment likelihood. Employed techniques encompass Logistic Regression (LR), K-Nearest Neighbor (KNN), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), in conjunction with deep learning architectures such as Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN). Following methodological refinement, it becomes apparent that ensemble learning approaches, exemplified by XGB and LGBM, exhibit markedly superior predictive performance, surpassing conventional models with an accuracy rate exceeding 85%. Salient predictors include interest rates, credit ratings, and loan amounts. It is anticipated that the findings of this investigation will furnish investors with a potent analytical toolset for discerning and selecting loan portfolios, thereby fostering greater transparency and efficiency within the peer-to-peer lending ecosystem.https://journalofscience.ou.edu.vn/index.php/econ-vi/article/view/3828dự báo khả năng hoàn trả khoản vayđánh giá rủi rohọc máyhọc sâuvay ngang hàng
spellingShingle Nguyễn Phát Đạt
Hồ Mai Minh Nhật
Trương Công Vinh
Lê Quang Chấn Phong
Lê Hoành Sử
Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
Tạp chí Khoa học Đại học Mở Thành phố Hồ Chí Minh - Kinh tế và Quản trị kinh doanh
dự báo khả năng hoàn trả khoản vay
đánh giá rủi ro
học máy
học sâu
vay ngang hàng
title Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
title_full Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
title_fullStr Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
title_full_unstemmed Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
title_short Applying in machine learning and deep learning in finance industry: A case study on repayment prediction
title_sort applying in machine learning and deep learning in finance industry a case study on repayment prediction
topic dự báo khả năng hoàn trả khoản vay
đánh giá rủi ro
học máy
học sâu
vay ngang hàng
url https://journalofscience.ou.edu.vn/index.php/econ-vi/article/view/3828
work_keys_str_mv AT nguyenphatđat applyinginmachinelearninganddeeplearninginfinanceindustryacasestudyonrepaymentprediction
AT homaiminhnhat applyinginmachinelearninganddeeplearninginfinanceindustryacasestudyonrepaymentprediction
AT truongcongvinh applyinginmachinelearninganddeeplearninginfinanceindustryacasestudyonrepaymentprediction
AT lequangchanphong applyinginmachinelearninganddeeplearninginfinanceindustryacasestudyonrepaymentprediction
AT lehoanhsu applyinginmachinelearninganddeeplearninginfinanceindustryacasestudyonrepaymentprediction