Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source

We consider the chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \nabla u-u \,\xi (v) \nabla v\big )+\mu \, u(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under ho...

Full description

Saved in:
Bibliographic Details
Main Author: Baghaei, Khadijeh
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.519/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206229317713920
author Baghaei, Khadijeh
author_facet Baghaei, Khadijeh
author_sort Baghaei, Khadijeh
collection DOAJ
description We consider the chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \nabla u-u \,\xi (v) \nabla v\big )+\mu \, u(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 2,$ with smooth boundary. Here, the functions $\gamma (v)$ and $\xi (v)$ are as: \begin{equation*} \gamma (v)=(1+v)^{-k}\quad \text{and} \quad \xi (v)=-(1-\alpha )\gamma ^{\prime }(v), \end{equation*} where $k>0$ and $\alpha \in (0,1).$We prove that the classical solutions to the above system are uniformly-in-time bounded provided that $ k\,(1-\alpha )<\frac{4}{n+5}$ and the initial value $ v_{0}$ and $\mu $ satisfy the following conditions: \begin{align*} 0<\Vert v_{0}\Vert _{L^{\infty }(\Omega )}\le \Bigg [\frac{4\big [1-k \, \big (1-\alpha \big )\big ]}{k\, (n+1)\,(1-\alpha )}\Bigg ]^{\frac{1}{k}}-1, \end{align*} and \begin{equation*} \mu > \frac{k\,n\,(1-\alpha ) \Vert v_{0}\Vert _{L^{\infty }(\Omega )}}{(n+1)(1+\Vert v_{0}\Vert _{L^{\infty }(\Omega )})}. \end{equation*} This result improves the recent result obtained for this problem by Li and Lu (J. Math. Anal. Appl.) (2023).
format Article
id doaj-art-56b734fffced448984ef7465bdfa8fd9
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-56b734fffced448984ef7465bdfa8fd92025-02-07T11:11:47ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101641165210.5802/crmath.51910.5802/crmath.519Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic sourceBaghaei, Khadijeh0Pasargad Institute for Advanced Innovative Solutions, No.30, Hakim Azam St., North Shiraz St., Mollasadra Ave., Tehran, IranWe consider the chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \nabla u-u \,\xi (v) \nabla v\big )+\mu \, u(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} \end{equation*} under homogeneous Neumann boundary conditions in a bounded domain $ \Omega \subset \mathbb{R}^{n}, n\ge 2,$ with smooth boundary. Here, the functions $\gamma (v)$ and $\xi (v)$ are as: \begin{equation*} \gamma (v)=(1+v)^{-k}\quad \text{and} \quad \xi (v)=-(1-\alpha )\gamma ^{\prime }(v), \end{equation*} where $k>0$ and $\alpha \in (0,1).$We prove that the classical solutions to the above system are uniformly-in-time bounded provided that $ k\,(1-\alpha )<\frac{4}{n+5}$ and the initial value $ v_{0}$ and $\mu $ satisfy the following conditions: \begin{align*} 0<\Vert v_{0}\Vert _{L^{\infty }(\Omega )}\le \Bigg [\frac{4\big [1-k \, \big (1-\alpha \big )\big ]}{k\, (n+1)\,(1-\alpha )}\Bigg ]^{\frac{1}{k}}-1, \end{align*} and \begin{equation*} \mu > \frac{k\,n\,(1-\alpha ) \Vert v_{0}\Vert _{L^{\infty }(\Omega )}}{(n+1)(1+\Vert v_{0}\Vert _{L^{\infty }(\Omega )})}. \end{equation*} This result improves the recent result obtained for this problem by Li and Lu (J. Math. Anal. Appl.) (2023).https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.519/
spellingShingle Baghaei, Khadijeh
Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
Comptes Rendus. Mathématique
title Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
title_full Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
title_fullStr Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
title_full_unstemmed Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
title_short Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
title_sort boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.519/
work_keys_str_mv AT baghaeikhadijeh boundednessofclassicalsolutionstoachemotaxisconsumptionsystemwithsignaldependentmotilityandlogisticsource