Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil
Keberhasilan sebuah perusahaan terjadi karena dapat mengelola sumber daya manusianya dengan baik begitu juga sebaliknya. Salah satu instansi yang mengelola sumber daya manusia menggunakan Manajemen Talenta adalah Badan Kepegawaian Daerah (BKD) kota Malang, dengan mengevaluasi pegawainya setiap tahun...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
University of Brawijaya
2021-11-01
|
Series: | Jurnal Teknologi Informasi dan Ilmu Komputer |
Online Access: | https://jtiik.ub.ac.id/index.php/jtiik/article/view/4431 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823860723729563648 |
---|---|
author | Adam Syarif Hidayatullah Fitra Abdurrachman Bachtiar Imam Cholissodin |
author_facet | Adam Syarif Hidayatullah Fitra Abdurrachman Bachtiar Imam Cholissodin |
author_sort | Adam Syarif Hidayatullah |
collection | DOAJ |
description | Keberhasilan sebuah perusahaan terjadi karena dapat mengelola sumber daya manusianya dengan baik begitu juga sebaliknya. Salah satu instansi yang mengelola sumber daya manusia menggunakan Manajemen Talenta adalah Badan Kepegawaian Daerah (BKD) kota Malang, dengan mengevaluasi pegawainya setiap tahunnya setelah pekerjaan selesai dilakukan. Hal ini menyebabkan hasil pekerjaan yang telah dilakukan tidak optimal, sehingga perlu identifikasi dini pegawai yang memiliki kinerja dibawah rata – rata sehingga dapat dievaluasi dan meminimalisir hasil pekerjaan yang tidak optimal dengan menggunakan teknik klasifikasi. Penelitian ini menggunakan teknik klasifikasi Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). Metode ini merupakan metode modifikasi dari metode K-Nearest Neighbor (KNN) dan dibuktikan memiliki performa lebih baik dibandingkan dengan metode aslinya KNN. Dilakukan pengujian F1-Score dan akurasi menggunakan K-Fold Cross Validation untuk mengetahui persebaran akurasi dan juga pengujian mengenai pengaruh normalisasi karena tidak ada informasi normalisasi pada penelitian sebelumnya. Metode pada kasus ini menghasilkan performa klasifikasi yang baik, dibuktikan bahwa hasil akurasi dan F1-Score oleh metode ini berturut – turut ialah mencapai 98,8% dan 98,1%.
Abstract
The success of company occurs because is manage human resources well and vice versa. One of institute that mange human resource using Talent Management is Malang city Badan Kepegawaian Daerah (BKD), which evaluates its employee annually after the work is completed. This can cause not optimal work result, so it necessary to early identification of employees who have performance below average performance so that can be evaluated and minimize not optimal result. This study is use classification technique Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). This method is modified base algorithm of K-Nearest Neighbor (KNN). F1-Score and Accuracy using K-Fold Cross Validation to measure performance of this method and normalization testing due to no any information about that in previous study. This method is proven to have better performance compared to it original algorithm KNN. The method in this study has produced good classification performance. The result of classification accuracy and F1-Score by this method reach 98,8% dan 98,1%.
|
format | Article |
id | doaj-art-5705e118afa14c309e78a39d56f4170b |
institution | Kabale University |
issn | 2355-7699 2528-6579 |
language | Indonesian |
publishDate | 2021-11-01 |
publisher | University of Brawijaya |
record_format | Article |
series | Jurnal Teknologi Informasi dan Ilmu Komputer |
spelling | doaj-art-5705e118afa14c309e78a39d56f4170b2025-02-10T10:41:07ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792021-11-018610.25126/jtiik.2021834431727Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri SipilAdam Syarif Hidayatullah0Fitra Abdurrachman Bachtiar1Imam Cholissodin2Universitas Brawijaya, MalangUniversitas Brawijaya, MalangUniversitas Brawijaya, MalangKeberhasilan sebuah perusahaan terjadi karena dapat mengelola sumber daya manusianya dengan baik begitu juga sebaliknya. Salah satu instansi yang mengelola sumber daya manusia menggunakan Manajemen Talenta adalah Badan Kepegawaian Daerah (BKD) kota Malang, dengan mengevaluasi pegawainya setiap tahunnya setelah pekerjaan selesai dilakukan. Hal ini menyebabkan hasil pekerjaan yang telah dilakukan tidak optimal, sehingga perlu identifikasi dini pegawai yang memiliki kinerja dibawah rata – rata sehingga dapat dievaluasi dan meminimalisir hasil pekerjaan yang tidak optimal dengan menggunakan teknik klasifikasi. Penelitian ini menggunakan teknik klasifikasi Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). Metode ini merupakan metode modifikasi dari metode K-Nearest Neighbor (KNN) dan dibuktikan memiliki performa lebih baik dibandingkan dengan metode aslinya KNN. Dilakukan pengujian F1-Score dan akurasi menggunakan K-Fold Cross Validation untuk mengetahui persebaran akurasi dan juga pengujian mengenai pengaruh normalisasi karena tidak ada informasi normalisasi pada penelitian sebelumnya. Metode pada kasus ini menghasilkan performa klasifikasi yang baik, dibuktikan bahwa hasil akurasi dan F1-Score oleh metode ini berturut – turut ialah mencapai 98,8% dan 98,1%. Abstract The success of company occurs because is manage human resources well and vice versa. One of institute that mange human resource using Talent Management is Malang city Badan Kepegawaian Daerah (BKD), which evaluates its employee annually after the work is completed. This can cause not optimal work result, so it necessary to early identification of employees who have performance below average performance so that can be evaluated and minimize not optimal result. This study is use classification technique Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). This method is modified base algorithm of K-Nearest Neighbor (KNN). F1-Score and Accuracy using K-Fold Cross Validation to measure performance of this method and normalization testing due to no any information about that in previous study. This method is proven to have better performance compared to it original algorithm KNN. The method in this study has produced good classification performance. The result of classification accuracy and F1-Score by this method reach 98,8% dan 98,1%. https://jtiik.ub.ac.id/index.php/jtiik/article/view/4431 |
spellingShingle | Adam Syarif Hidayatullah Fitra Abdurrachman Bachtiar Imam Cholissodin Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil Jurnal Teknologi Informasi dan Ilmu Komputer |
title | Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil |
title_full | Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil |
title_fullStr | Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil |
title_full_unstemmed | Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil |
title_short | Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil |
title_sort | penerapan algoritme nearest centroid neighbor classifier based on k local means using harmonic mean distance lmkhncn untuk klasifikasi hasil kinerja pegawai negeri sipil |
url | https://jtiik.ub.ac.id/index.php/jtiik/article/view/4431 |
work_keys_str_mv | AT adamsyarifhidayatullah penerapanalgoritmenearestcentroidneighborclassifierbasedonklocalmeansusingharmonicmeandistancelmkhncnuntukklasifikasihasilkinerjapegawainegerisipil AT fitraabdurrachmanbachtiar penerapanalgoritmenearestcentroidneighborclassifierbasedonklocalmeansusingharmonicmeandistancelmkhncnuntukklasifikasihasilkinerjapegawainegerisipil AT imamcholissodin penerapanalgoritmenearestcentroidneighborclassifierbasedonklocalmeansusingharmonicmeandistancelmkhncnuntukklasifikasihasilkinerjapegawainegerisipil |