Counterexamples to F. Morel’s conjecture on $\protect \pi _0^{\protect \mathbb{A}^1}$
We exhibit counterexamples to F. Morel’s conjecture on the $\mathbb{A}^1$-invariance of the sheaves of connected components of $\mathbb{A}^1$-local spaces.
Saved in:
Main Author: | Ayoub, Joseph |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.472/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Distribution of matrices over $\mathbb{F}_q[x]$
by: Ji, Yibo
Published: (2024-10-01) -
Massive spectrum in F-theory and the distance conjecture
by: Keren Chen, et al.
Published: (2025-01-01) -
Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
by: Aibèche, Aissa, et al.
Published: (2023-03-01) -
A simplified counterexample to the integral representation of the relaxation of double integrals
by: Braides, Andrea
Published: (2024-05-01) -
Riemann–Roch for the ring $\mathbb{Z}$
by: Connes, Alain, et al.
Published: (2024-05-01)