Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications
Let $X$ be a smooth, geometrically integral variety without non-constant invertible functions over a field $K$. Then the quotient of the “algebraic” Brauer group of $X$ by $\mathrm{Br}\,K$ injects into $\mathrm{H}^1(K,\mathrm{Pic}{\overline{X}})$. We show that this inclusion is not always an isomorp...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-07-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.587/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206231430594560 |
---|---|
author | Linh, Nguyen Manh |
author_facet | Linh, Nguyen Manh |
author_sort | Linh, Nguyen Manh |
collection | DOAJ |
description | Let $X$ be a smooth, geometrically integral variety without non-constant invertible functions over a field $K$. Then the quotient of the “algebraic” Brauer group of $X$ by $\mathrm{Br}\,K$ injects into $\mathrm{H}^1(K,\mathrm{Pic}{\overline{X}})$. We show that this inclusion is not always an isomorphism, even in the case where $X$ is a homogeneous space of a connected linear algebraic group over $K$. A similar result for the smooth compactifications of $X$ is also given. |
format | Article |
id | doaj-art-597af272353f4feb908c988b0cdad3e6 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-07-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-597af272353f4feb908c988b0cdad3e62025-02-07T11:21:52ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-07-01362G669370010.5802/crmath.58710.5802/crmath.587Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactificationsLinh, Nguyen Manh0Laboratoire de Mathématiques d’Orsay, Bâtiment 307, rue Michel Magat, Faculté des Sciences d’Orsay, Université Paris-Saclay, F-91405 Orsay Cedex, FranceLet $X$ be a smooth, geometrically integral variety without non-constant invertible functions over a field $K$. Then the quotient of the “algebraic” Brauer group of $X$ by $\mathrm{Br}\,K$ injects into $\mathrm{H}^1(K,\mathrm{Pic}{\overline{X}})$. We show that this inclusion is not always an isomorphism, even in the case where $X$ is a homogeneous space of a connected linear algebraic group over $K$. A similar result for the smooth compactifications of $X$ is also given.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.587/ |
spellingShingle | Linh, Nguyen Manh Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications Comptes Rendus. Mathématique |
title | Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications |
title_full | Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications |
title_fullStr | Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications |
title_full_unstemmed | Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications |
title_short | Groupes de Brauer algébriques modulo les constantes d’espaces homogènes et leurs compactifications |
title_sort | groupes de brauer algebriques modulo les constantes d espaces homogenes et leurs compactifications |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.587/ |
work_keys_str_mv | AT linhnguyenmanh groupesdebraueralgebriquesmodulolesconstantesdespaceshomogenesetleurscompactifications |