Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind

In the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escap...

Full description

Saved in:
Bibliographic Details
Main Authors: Yeimy J. Rivera, Samuel T. Badman, J. L. Verniero, Tania Varesano, Michael L. Stevens, Julia E. Stawarz, Katharine K. Reeves, Jim M. Raines, John C. Raymond, Christopher J. Owen, Stefano A. Livi, Susan T. Lepri, Enrico Landi, Jasper. S. Halekas, Tamar Ervin, Ryan M. Dewey, Rossana De Marco, Raffaella D’Amicis, Jean-Baptiste Dakeyo, Stuart D. Bale, B. L. Alterman
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ada699
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823860901285986304
author Yeimy J. Rivera
Samuel T. Badman
J. L. Verniero
Tania Varesano
Michael L. Stevens
Julia E. Stawarz
Katharine K. Reeves
Jim M. Raines
John C. Raymond
Christopher J. Owen
Stefano A. Livi
Susan T. Lepri
Enrico Landi
Jasper. S. Halekas
Tamar Ervin
Ryan M. Dewey
Rossana De Marco
Raffaella D’Amicis
Jean-Baptiste Dakeyo
Stuart D. Bale
B. L. Alterman
author_facet Yeimy J. Rivera
Samuel T. Badman
J. L. Verniero
Tania Varesano
Michael L. Stevens
Julia E. Stawarz
Katharine K. Reeves
Jim M. Raines
John C. Raymond
Christopher J. Owen
Stefano A. Livi
Susan T. Lepri
Enrico Landi
Jasper. S. Halekas
Tamar Ervin
Ryan M. Dewey
Rossana De Marco
Raffaella D’Amicis
Jean-Baptiste Dakeyo
Stuart D. Bale
B. L. Alterman
author_sort Yeimy J. Rivera
collection DOAJ
description In the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escapes. Instead, the solar wind continues to accelerate, and it cools far more slowly than a freely expanding adiabatic gas. Recent work suggests that fast solar wind requires additional momentum beyond what can be provided by the observed thermal pressure gradients alone, whereas it is sufficient for the slowest wind. The additional acceleration for fast wind can be provided through an Alfvén wave pressure gradient. Beyond this fast/slow categorization, however, a subset of slow solar wind exhibits high Alfvénicity that suggests that Alfvén waves could play a larger role in its acceleration compared to conventional slow wind outflows. Through a well-timed conjunction between Solar Orbiter and Parker Solar Probe (PSP), we trace the energetics of slow wind to compare with a neighboring Alfvénic slow solar wind stream. An analysis that integrates remote and heliospheric properties and modeling of the two distinct solar wind streams finds that Alfvénic slow solar wind behaves like fast wind, where a wave pressure gradient is required to reconcile its full acceleration, while non-Alfvénic slow wind can be driven by its nonadiabatic electron and proton thermal pressure gradients. Derived coronal conditions of the source region indicate good model compatibility, but extended coronal observations are required to effectively trace solar wind energetics below PSP's orbit.
format Article
id doaj-art-5ab7df2b71d6445fba2de0c59cde5fd1
institution Kabale University
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-5ab7df2b71d6445fba2de0c59cde5fd12025-02-10T09:33:17ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-0198017010.3847/1538-4357/ada699Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar WindYeimy J. Rivera0https://orcid.org/0000-0002-8748-2123Samuel T. Badman1https://orcid.org/0000-0002-6145-436XJ. L. Verniero2https://orcid.org/0000-0003-1138-652XTania Varesano3Michael L. Stevens4https://orcid.org/0000-0002-7728-0085Julia E. Stawarz5https://orcid.org/0000-0002-5702-5802Katharine K. Reeves6https://orcid.org/0000-0002-6903-6832Jim M. Raines7https://orcid.org/0000-0001-5956-9523John C. Raymond8https://orcid.org/0000-0002-7868-1622Christopher J. Owen9https://orcid.org/0000-0002-5982-4667Stefano A. Livi10https://orcid.org/0000-0002-4149-7311Susan T. Lepri11https://orcid.org/0000-0003-1611-227XEnrico Landi12https://orcid.org/0000-0002-9325-9884Jasper. S. Halekas13https://orcid.org/0000-0001-5258-6128Tamar Ervin14https://orcid.org/0000-0002-8475-8606Ryan M. Dewey15https://orcid.org/0000-0003-4437-0698Rossana De Marco16https://orcid.org/0000-0002-7426-7379Raffaella D’Amicis17https://orcid.org/0000-0003-2647-117XJean-Baptiste Dakeyo18https://orcid.org/0000-0002-1628-0276Stuart D. Bale19https://orcid.org/0000-0002-1989-3596B. L. Alterman20https://orcid.org/0000-0001-6673-3432Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USAHeliophysics Laboratory, NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USASouthwest Research Institute , Boulder, CO 80302, USA; Department of Aerospace Engineering Sciences, University of Colorado Boulder , Boulder, CO 80303, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USADepartment of Mathematics, Physics, and Electrical Engineering, Northumbria University , Newcastle upon Tyne, UKCenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USAMullard Space Science Laboratory, University College London , Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UKDepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA; Southwest Research Institute , San Antonio, TX 78228, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USADepartment of Physics and Astronomy, University of Iowa , Iowa City, IA 52242, USADepartment of Physics, University of California, Berkeley , Berkeley, CA 94720-7300, USA; Space Sciences Laboratory, University of California, Berkeley , Berkeley, CA 94720-7450, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USAINAF—Institute for Space Astrophysics and Planetology , Rome, ItalyINAF—Institute for Space Astrophysics and Planetology , Rome, ItalyLESIA, Observatoire de Paris, Université PSL , CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France; IRAP, Observatoire Midi-Pyrénées, Université Toulouse III—Paul Sabatier , CNRS, 9 Avenue du Colonel Roche, 31400 Toulouse, FranceSpace Sciences Laboratory, University of California, Berkeley , Berkeley, CA 94720-7450, USA; Physics Department, University of California, Berkeley , Berkeley, CA 94720-7300, USAHeliophysics Laboratory, NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAIn the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escapes. Instead, the solar wind continues to accelerate, and it cools far more slowly than a freely expanding adiabatic gas. Recent work suggests that fast solar wind requires additional momentum beyond what can be provided by the observed thermal pressure gradients alone, whereas it is sufficient for the slowest wind. The additional acceleration for fast wind can be provided through an Alfvén wave pressure gradient. Beyond this fast/slow categorization, however, a subset of slow solar wind exhibits high Alfvénicity that suggests that Alfvén waves could play a larger role in its acceleration compared to conventional slow wind outflows. Through a well-timed conjunction between Solar Orbiter and Parker Solar Probe (PSP), we trace the energetics of slow wind to compare with a neighboring Alfvénic slow solar wind stream. An analysis that integrates remote and heliospheric properties and modeling of the two distinct solar wind streams finds that Alfvénic slow solar wind behaves like fast wind, where a wave pressure gradient is required to reconcile its full acceleration, while non-Alfvénic slow wind can be driven by its nonadiabatic electron and proton thermal pressure gradients. Derived coronal conditions of the source region indicate good model compatibility, but extended coronal observations are required to effectively trace solar wind energetics below PSP's orbit.https://doi.org/10.3847/1538-4357/ada699Solar windSlow solar windAlfvén wavesChemical abundances
spellingShingle Yeimy J. Rivera
Samuel T. Badman
J. L. Verniero
Tania Varesano
Michael L. Stevens
Julia E. Stawarz
Katharine K. Reeves
Jim M. Raines
John C. Raymond
Christopher J. Owen
Stefano A. Livi
Susan T. Lepri
Enrico Landi
Jasper. S. Halekas
Tamar Ervin
Ryan M. Dewey
Rossana De Marco
Raffaella D’Amicis
Jean-Baptiste Dakeyo
Stuart D. Bale
B. L. Alterman
Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
The Astrophysical Journal
Solar wind
Slow solar wind
Alfvén waves
Chemical abundances
title Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
title_full Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
title_fullStr Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
title_full_unstemmed Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
title_short Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
title_sort differentiating the acceleration mechanisms in the slow and alfvenic slow solar wind
topic Solar wind
Slow solar wind
Alfvén waves
Chemical abundances
url https://doi.org/10.3847/1538-4357/ada699
work_keys_str_mv AT yeimyjrivera differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT samueltbadman differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT jlverniero differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT taniavaresano differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT michaellstevens differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT juliaestawarz differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT katharinekreeves differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT jimmraines differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT johncraymond differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT christopherjowen differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT stefanoalivi differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT susantlepri differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT enricolandi differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT jaspershalekas differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT tamarervin differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT ryanmdewey differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT rossanademarco differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT raffaelladamicis differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT jeanbaptistedakeyo differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT stuartdbale differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind
AT blalterman differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind