Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind
In the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escap...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2025-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/ada699 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823860901285986304 |
---|---|
author | Yeimy J. Rivera Samuel T. Badman J. L. Verniero Tania Varesano Michael L. Stevens Julia E. Stawarz Katharine K. Reeves Jim M. Raines John C. Raymond Christopher J. Owen Stefano A. Livi Susan T. Lepri Enrico Landi Jasper. S. Halekas Tamar Ervin Ryan M. Dewey Rossana De Marco Raffaella D’Amicis Jean-Baptiste Dakeyo Stuart D. Bale B. L. Alterman |
author_facet | Yeimy J. Rivera Samuel T. Badman J. L. Verniero Tania Varesano Michael L. Stevens Julia E. Stawarz Katharine K. Reeves Jim M. Raines John C. Raymond Christopher J. Owen Stefano A. Livi Susan T. Lepri Enrico Landi Jasper. S. Halekas Tamar Ervin Ryan M. Dewey Rossana De Marco Raffaella D’Amicis Jean-Baptiste Dakeyo Stuart D. Bale B. L. Alterman |
author_sort | Yeimy J. Rivera |
collection | DOAJ |
description | In the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escapes. Instead, the solar wind continues to accelerate, and it cools far more slowly than a freely expanding adiabatic gas. Recent work suggests that fast solar wind requires additional momentum beyond what can be provided by the observed thermal pressure gradients alone, whereas it is sufficient for the slowest wind. The additional acceleration for fast wind can be provided through an Alfvén wave pressure gradient. Beyond this fast/slow categorization, however, a subset of slow solar wind exhibits high Alfvénicity that suggests that Alfvén waves could play a larger role in its acceleration compared to conventional slow wind outflows. Through a well-timed conjunction between Solar Orbiter and Parker Solar Probe (PSP), we trace the energetics of slow wind to compare with a neighboring Alfvénic slow solar wind stream. An analysis that integrates remote and heliospheric properties and modeling of the two distinct solar wind streams finds that Alfvénic slow solar wind behaves like fast wind, where a wave pressure gradient is required to reconcile its full acceleration, while non-Alfvénic slow wind can be driven by its nonadiabatic electron and proton thermal pressure gradients. Derived coronal conditions of the source region indicate good model compatibility, but extended coronal observations are required to effectively trace solar wind energetics below PSP's orbit. |
format | Article |
id | doaj-art-5ab7df2b71d6445fba2de0c59cde5fd1 |
institution | Kabale University |
issn | 1538-4357 |
language | English |
publishDate | 2025-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj-art-5ab7df2b71d6445fba2de0c59cde5fd12025-02-10T09:33:17ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-0198017010.3847/1538-4357/ada699Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar WindYeimy J. Rivera0https://orcid.org/0000-0002-8748-2123Samuel T. Badman1https://orcid.org/0000-0002-6145-436XJ. L. Verniero2https://orcid.org/0000-0003-1138-652XTania Varesano3Michael L. Stevens4https://orcid.org/0000-0002-7728-0085Julia E. Stawarz5https://orcid.org/0000-0002-5702-5802Katharine K. Reeves6https://orcid.org/0000-0002-6903-6832Jim M. Raines7https://orcid.org/0000-0001-5956-9523John C. Raymond8https://orcid.org/0000-0002-7868-1622Christopher J. Owen9https://orcid.org/0000-0002-5982-4667Stefano A. Livi10https://orcid.org/0000-0002-4149-7311Susan T. Lepri11https://orcid.org/0000-0003-1611-227XEnrico Landi12https://orcid.org/0000-0002-9325-9884Jasper. S. Halekas13https://orcid.org/0000-0001-5258-6128Tamar Ervin14https://orcid.org/0000-0002-8475-8606Ryan M. Dewey15https://orcid.org/0000-0003-4437-0698Rossana De Marco16https://orcid.org/0000-0002-7426-7379Raffaella D’Amicis17https://orcid.org/0000-0003-2647-117XJean-Baptiste Dakeyo18https://orcid.org/0000-0002-1628-0276Stuart D. Bale19https://orcid.org/0000-0002-1989-3596B. L. Alterman20https://orcid.org/0000-0001-6673-3432Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USAHeliophysics Laboratory, NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USASouthwest Research Institute , Boulder, CO 80302, USA; Department of Aerospace Engineering Sciences, University of Colorado Boulder , Boulder, CO 80303, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USADepartment of Mathematics, Physics, and Electrical Engineering, Northumbria University , Newcastle upon Tyne, UKCenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USAMullard Space Science Laboratory, University College London , Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UKDepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA; Southwest Research Institute , San Antonio, TX 78228, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USADepartment of Physics and Astronomy, University of Iowa , Iowa City, IA 52242, USADepartment of Physics, University of California, Berkeley , Berkeley, CA 94720-7300, USA; Space Sciences Laboratory, University of California, Berkeley , Berkeley, CA 94720-7450, USADepartment of Climate & Space Sciences & Engineering, University of Michigan , 2455 Hayward Street, Ann Arbor, MI 48109-2143, USAINAF—Institute for Space Astrophysics and Planetology , Rome, ItalyINAF—Institute for Space Astrophysics and Planetology , Rome, ItalyLESIA, Observatoire de Paris, Université PSL , CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France; IRAP, Observatoire Midi-Pyrénées, Université Toulouse III—Paul Sabatier , CNRS, 9 Avenue du Colonel Roche, 31400 Toulouse, FranceSpace Sciences Laboratory, University of California, Berkeley , Berkeley, CA 94720-7450, USA; Physics Department, University of California, Berkeley , Berkeley, CA 94720-7300, USAHeliophysics Laboratory, NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAIn the corona, plasma is accelerated to hundreds of kilometers per second and heated to temperatures hundreds of times hotter than the Sun's surface before it escapes to form the solar wind. Decades of space-based experiments have shown that the energization process does not stop after it escapes. Instead, the solar wind continues to accelerate, and it cools far more slowly than a freely expanding adiabatic gas. Recent work suggests that fast solar wind requires additional momentum beyond what can be provided by the observed thermal pressure gradients alone, whereas it is sufficient for the slowest wind. The additional acceleration for fast wind can be provided through an Alfvén wave pressure gradient. Beyond this fast/slow categorization, however, a subset of slow solar wind exhibits high Alfvénicity that suggests that Alfvén waves could play a larger role in its acceleration compared to conventional slow wind outflows. Through a well-timed conjunction between Solar Orbiter and Parker Solar Probe (PSP), we trace the energetics of slow wind to compare with a neighboring Alfvénic slow solar wind stream. An analysis that integrates remote and heliospheric properties and modeling of the two distinct solar wind streams finds that Alfvénic slow solar wind behaves like fast wind, where a wave pressure gradient is required to reconcile its full acceleration, while non-Alfvénic slow wind can be driven by its nonadiabatic electron and proton thermal pressure gradients. Derived coronal conditions of the source region indicate good model compatibility, but extended coronal observations are required to effectively trace solar wind energetics below PSP's orbit.https://doi.org/10.3847/1538-4357/ada699Solar windSlow solar windAlfvén wavesChemical abundances |
spellingShingle | Yeimy J. Rivera Samuel T. Badman J. L. Verniero Tania Varesano Michael L. Stevens Julia E. Stawarz Katharine K. Reeves Jim M. Raines John C. Raymond Christopher J. Owen Stefano A. Livi Susan T. Lepri Enrico Landi Jasper. S. Halekas Tamar Ervin Ryan M. Dewey Rossana De Marco Raffaella D’Amicis Jean-Baptiste Dakeyo Stuart D. Bale B. L. Alterman Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind The Astrophysical Journal Solar wind Slow solar wind Alfvén waves Chemical abundances |
title | Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind |
title_full | Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind |
title_fullStr | Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind |
title_full_unstemmed | Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind |
title_short | Differentiating the Acceleration Mechanisms in the Slow and Alfvénic Slow Solar Wind |
title_sort | differentiating the acceleration mechanisms in the slow and alfvenic slow solar wind |
topic | Solar wind Slow solar wind Alfvén waves Chemical abundances |
url | https://doi.org/10.3847/1538-4357/ada699 |
work_keys_str_mv | AT yeimyjrivera differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT samueltbadman differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT jlverniero differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT taniavaresano differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT michaellstevens differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT juliaestawarz differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT katharinekreeves differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT jimmraines differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT johncraymond differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT christopherjowen differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT stefanoalivi differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT susantlepri differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT enricolandi differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT jaspershalekas differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT tamarervin differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT ryanmdewey differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT rossanademarco differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT raffaelladamicis differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT jeanbaptistedakeyo differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT stuartdbale differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind AT blalterman differentiatingtheaccelerationmechanismsintheslowandalfvenicslowsolarwind |