Completeness of certain compact Lorentzian locally symmetric spaces

We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlie...

Full description

Saved in:
Bibliographic Details
Main Authors: Leistner, Thomas, Munn, Thomas
Format: Article
Language:English
Published: Académie des sciences 2023-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.449/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206232113217536
author Leistner, Thomas
Munn, Thomas
author_facet Leistner, Thomas
Munn, Thomas
author_sort Leistner, Thomas
collection DOAJ
description We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.
format Article
id doaj-art-5c7bf8624d9541f8a925105df00ad605
institution Kabale University
issn 1778-3569
language English
publishDate 2023-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-5c7bf8624d9541f8a925105df00ad6052025-02-07T11:07:37ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-05-01361G481982410.5802/crmath.44910.5802/crmath.449Completeness of certain compact Lorentzian locally symmetric spacesLeistner, Thomas0Munn, Thomas1School of Mathematical Sciences, University of Adelaide, SA 5005, AustraliaLund University, Faculty of Science, Centre for Mathematical Sciences, Box 118, 22100 Lund, SwedenWe show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.449/Lorentzian manifoldsLorentzian symmetric spacesgeodesic completeness
spellingShingle Leistner, Thomas
Munn, Thomas
Completeness of certain compact Lorentzian locally symmetric spaces
Comptes Rendus. Mathématique
Lorentzian manifolds
Lorentzian symmetric spaces
geodesic completeness
title Completeness of certain compact Lorentzian locally symmetric spaces
title_full Completeness of certain compact Lorentzian locally symmetric spaces
title_fullStr Completeness of certain compact Lorentzian locally symmetric spaces
title_full_unstemmed Completeness of certain compact Lorentzian locally symmetric spaces
title_short Completeness of certain compact Lorentzian locally symmetric spaces
title_sort completeness of certain compact lorentzian locally symmetric spaces
topic Lorentzian manifolds
Lorentzian symmetric spaces
geodesic completeness
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.449/
work_keys_str_mv AT leistnerthomas completenessofcertaincompactlorentzianlocallysymmetricspaces
AT munnthomas completenessofcertaincompactlorentzianlocallysymmetricspaces