Global Solutions for a Nonlocal Problem with Logarithmic Source Term

The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[,  $$where\beg...

Full description

Saved in:
Bibliographic Details
Main Author: Eugenio Lapa
Format: Article
Language:English
Published: University of Maragheh 2024-07-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859399487127552
author Eugenio Lapa
author_facet Eugenio Lapa
author_sort Eugenio Lapa
collection DOAJ
description The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[,  $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}\end{array}\right.\end{equation*}If the initial data are appropriately small, we derive existence of global strong solutions and the  exponential decay of the energy.
format Article
id doaj-art-69a8a47c00c44224a16a77e801e4aea3
institution Kabale University
issn 2322-5807
2423-3900
language English
publishDate 2024-07-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj-art-69a8a47c00c44224a16a77e801e4aea32025-02-11T05:27:31ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002024-07-0121337138510.22130/scma.2023.2001016.1307712733Global Solutions for a Nonlocal Problem with Logarithmic Source TermEugenio Lapa0Instituto de Investigacion ,FCM-UNMSM, Av. Venezuela S/N, Lima- Peru.The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[,  $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}\end{array}\right.\end{equation*}If the initial data are appropriately small, we derive existence of global strong solutions and the  exponential decay of the energy.https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdfglobal solutionsdegenerate nonlocal problemasymptotic behavior
spellingShingle Eugenio Lapa
Global Solutions for a Nonlocal Problem with Logarithmic Source Term
Sahand Communications in Mathematical Analysis
global solutions
degenerate nonlocal problem
asymptotic behavior
title Global Solutions for a Nonlocal Problem with Logarithmic Source Term
title_full Global Solutions for a Nonlocal Problem with Logarithmic Source Term
title_fullStr Global Solutions for a Nonlocal Problem with Logarithmic Source Term
title_full_unstemmed Global Solutions for a Nonlocal Problem with Logarithmic Source Term
title_short Global Solutions for a Nonlocal Problem with Logarithmic Source Term
title_sort global solutions for a nonlocal problem with logarithmic source term
topic global solutions
degenerate nonlocal problem
asymptotic behavior
url https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdf
work_keys_str_mv AT eugeniolapa globalsolutionsforanonlocalproblemwithlogarithmicsourceterm