Global Solutions for a Nonlocal Problem with Logarithmic Source Term
The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[, $$where\beg...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2024-07-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1823859399487127552 |
---|---|
author | Eugenio Lapa |
author_facet | Eugenio Lapa |
author_sort | Eugenio Lapa |
collection | DOAJ |
description | The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[, $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}\end{array}\right.\end{equation*}If the initial data are appropriately small, we derive existence of global strong solutions and the exponential decay of the energy. |
format | Article |
id | doaj-art-69a8a47c00c44224a16a77e801e4aea3 |
institution | Kabale University |
issn | 2322-5807 2423-3900 |
language | English |
publishDate | 2024-07-01 |
publisher | University of Maragheh |
record_format | Article |
series | Sahand Communications in Mathematical Analysis |
spelling | doaj-art-69a8a47c00c44224a16a77e801e4aea32025-02-11T05:27:31ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002024-07-0121337138510.22130/scma.2023.2001016.1307712733Global Solutions for a Nonlocal Problem with Logarithmic Source TermEugenio Lapa0Instituto de Investigacion ,FCM-UNMSM, Av. Venezuela S/N, Lima- Peru.The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[, $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}\end{array}\right.\end{equation*}If the initial data are appropriately small, we derive existence of global strong solutions and the exponential decay of the energy.https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdfglobal solutionsdegenerate nonlocal problemasymptotic behavior |
spellingShingle | Eugenio Lapa Global Solutions for a Nonlocal Problem with Logarithmic Source Term Sahand Communications in Mathematical Analysis global solutions degenerate nonlocal problem asymptotic behavior |
title | Global Solutions for a Nonlocal Problem with Logarithmic Source Term |
title_full | Global Solutions for a Nonlocal Problem with Logarithmic Source Term |
title_fullStr | Global Solutions for a Nonlocal Problem with Logarithmic Source Term |
title_full_unstemmed | Global Solutions for a Nonlocal Problem with Logarithmic Source Term |
title_short | Global Solutions for a Nonlocal Problem with Logarithmic Source Term |
title_sort | global solutions for a nonlocal problem with logarithmic source term |
topic | global solutions degenerate nonlocal problem asymptotic behavior |
url | https://scma.maragheh.ac.ir/article_712733_621d736ee4c56b9ae3237a0bb849f3d1.pdf |
work_keys_str_mv | AT eugeniolapa globalsolutionsforanonlocalproblemwithlogarithmicsourceterm |