Nomograms of solid linear viscoelastic materials in time and frequency domains
The mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors i...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2025-01-01
|
Series: | Comptes Rendus. Mécanique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825205931235868672 |
---|---|
author | de Sousa, Tiago Lima da Silva, Jéderson Pereira, Jucélio Tomás Pires, Carolina Mocelin Gomes |
author_facet | de Sousa, Tiago Lima da Silva, Jéderson Pereira, Jucélio Tomás Pires, Carolina Mocelin Gomes |
author_sort | de Sousa, Tiago Lima |
collection | DOAJ |
description | The mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors in different temperature and frequency or time ranges can be grouped into a single graph, named nomogram. The present work proposes a method for constructing nomograms for viscoelastic functions, Young’s and shear relaxation moduli, and Poisson’s ratio, defined in the time domain. It also proposed a nomogram for the complex Poisson’s ratio in the frequency domain. |
format | Article |
id | doaj-art-6bbd2190c4174d56882344386696085d |
institution | Kabale University |
issn | 1873-7234 |
language | English |
publishDate | 2025-01-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mécanique |
spelling | doaj-art-6bbd2190c4174d56882344386696085d2025-02-07T13:49:01ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342025-01-01353G130932010.5802/crmeca.28310.5802/crmeca.283Nomograms of solid linear viscoelastic materials in time and frequency domainsde Sousa, Tiago Lima0https://orcid.org/0000-0002-8992-6293da Silva, Jéderson1https://orcid.org/0000-0002-2714-3330Pereira, Jucélio Tomás2https://orcid.org/0000-0002-2483-4339Pires, Carolina Mocelin Gomes3https://orcid.org/0000-0002-5171-3217Department of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, Brazil; Department of Mechanical Engineering, Federal University of Pernambuco, Recife, 50740-550, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, Brazil; Department of Mechanical Engineering, Federal University of Technology – Parana, Londrina, 86036-370, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, BrazilThe mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors in different temperature and frequency or time ranges can be grouped into a single graph, named nomogram. The present work proposes a method for constructing nomograms for viscoelastic functions, Young’s and shear relaxation moduli, and Poisson’s ratio, defined in the time domain. It also proposed a nomogram for the complex Poisson’s ratio in the frequency domain.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/Viscoelastic behaviorViscoelastic functionsComplex Poisson’s ratioComplex Young’s modulusComplex shear modulus |
spellingShingle | de Sousa, Tiago Lima da Silva, Jéderson Pereira, Jucélio Tomás Pires, Carolina Mocelin Gomes Nomograms of solid linear viscoelastic materials in time and frequency domains Comptes Rendus. Mécanique Viscoelastic behavior Viscoelastic functions Complex Poisson’s ratio Complex Young’s modulus Complex shear modulus |
title | Nomograms of solid linear viscoelastic materials in time and frequency domains |
title_full | Nomograms of solid linear viscoelastic materials in time and frequency domains |
title_fullStr | Nomograms of solid linear viscoelastic materials in time and frequency domains |
title_full_unstemmed | Nomograms of solid linear viscoelastic materials in time and frequency domains |
title_short | Nomograms of solid linear viscoelastic materials in time and frequency domains |
title_sort | nomograms of solid linear viscoelastic materials in time and frequency domains |
topic | Viscoelastic behavior Viscoelastic functions Complex Poisson’s ratio Complex Young’s modulus Complex shear modulus |
url | https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/ |
work_keys_str_mv | AT desousatiagolima nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains AT dasilvajederson nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains AT pereirajuceliotomas nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains AT pirescarolinamocelingomes nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains |