Nomograms of solid linear viscoelastic materials in time and frequency domains

The mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors i...

Full description

Saved in:
Bibliographic Details
Main Authors: de Sousa, Tiago Lima, da Silva, Jéderson, Pereira, Jucélio Tomás, Pires, Carolina Mocelin Gomes
Format: Article
Language:English
Published: Académie des sciences 2025-01-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825205931235868672
author de Sousa, Tiago Lima
da Silva, Jéderson
Pereira, Jucélio Tomás
Pires, Carolina Mocelin Gomes
author_facet de Sousa, Tiago Lima
da Silva, Jéderson
Pereira, Jucélio Tomás
Pires, Carolina Mocelin Gomes
author_sort de Sousa, Tiago Lima
collection DOAJ
description The mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors in different temperature and frequency or time ranges can be grouped into a single graph, named nomogram. The present work proposes a method for constructing nomograms for viscoelastic functions, Young’s and shear relaxation moduli, and Poisson’s ratio, defined in the time domain. It also proposed a nomogram for the complex Poisson’s ratio in the frequency domain.
format Article
id doaj-art-6bbd2190c4174d56882344386696085d
institution Kabale University
issn 1873-7234
language English
publishDate 2025-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-6bbd2190c4174d56882344386696085d2025-02-07T13:49:01ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342025-01-01353G130932010.5802/crmeca.28310.5802/crmeca.283Nomograms of solid linear viscoelastic materials in time and frequency domainsde Sousa, Tiago Lima0https://orcid.org/0000-0002-8992-6293da Silva, Jéderson1https://orcid.org/0000-0002-2714-3330Pereira, Jucélio Tomás2https://orcid.org/0000-0002-2483-4339Pires, Carolina Mocelin Gomes3https://orcid.org/0000-0002-5171-3217Department of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, Brazil; Department of Mechanical Engineering, Federal University of Pernambuco, Recife, 50740-550, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, Brazil; Department of Mechanical Engineering, Federal University of Technology – Parana, Londrina, 86036-370, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, BrazilDepartment of Mechanical Engineering, Federal University of Parana, Curitiba, 81530-000, BrazilThe mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors in different temperature and frequency or time ranges can be grouped into a single graph, named nomogram. The present work proposes a method for constructing nomograms for viscoelastic functions, Young’s and shear relaxation moduli, and Poisson’s ratio, defined in the time domain. It also proposed a nomogram for the complex Poisson’s ratio in the frequency domain.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/Viscoelastic behaviorViscoelastic functionsComplex Poisson’s ratioComplex Young’s modulusComplex shear modulus
spellingShingle de Sousa, Tiago Lima
da Silva, Jéderson
Pereira, Jucélio Tomás
Pires, Carolina Mocelin Gomes
Nomograms of solid linear viscoelastic materials in time and frequency domains
Comptes Rendus. Mécanique
Viscoelastic behavior
Viscoelastic functions
Complex Poisson’s ratio
Complex Young’s modulus
Complex shear modulus
title Nomograms of solid linear viscoelastic materials in time and frequency domains
title_full Nomograms of solid linear viscoelastic materials in time and frequency domains
title_fullStr Nomograms of solid linear viscoelastic materials in time and frequency domains
title_full_unstemmed Nomograms of solid linear viscoelastic materials in time and frequency domains
title_short Nomograms of solid linear viscoelastic materials in time and frequency domains
title_sort nomograms of solid linear viscoelastic materials in time and frequency domains
topic Viscoelastic behavior
Viscoelastic functions
Complex Poisson’s ratio
Complex Young’s modulus
Complex shear modulus
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.283/
work_keys_str_mv AT desousatiagolima nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains
AT dasilvajederson nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains
AT pereirajuceliotomas nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains
AT pirescarolinamocelingomes nomogramsofsolidlinearviscoelasticmaterialsintimeandfrequencydomains