Sur la géométrie des ensembles de nœuds pour l’interpolation de Lagrange en plusieurs variables
Given a valid set $X$ of interpolation points for Lagrange interpolation of degree $d$ in $n$ variables we study how many subsets of $X$ can be chosen in order to obtain a valid set of interpolation points of degree $d-1$. This leads to an estimate of the number of Newton structures for $X$ which, i...
Saved in:
Main Author: | Bertrand, François |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-03-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.436/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Comparison Between Newton's Interpolation and Lagrange Method with Runge Kutt a Method in Solving First Order Differential Equations.
by: Muligi, Amos
Published: (2024) -
Stigating Newton's Interpolation and Lagrange Method Compared to Runge Kutt A Method in Solving First Order Differential Equations.
by: Gumisirlza, Catheline
Published: (2024) -
Direction d’ajustement ou qualité de présence. Sur la caractérisation des états intentionnels pour la taxinomie des actes de langage et la typologie des modalités
by: Sémir Badir
Published: (2025-02-01) -
Des «nanotransporteurs» d’ADN : Repousser les limites des Nanomédicaments pour traiter le cancer
by: Djawad Chikh
Published: (2022-12-01) -
On Gaussian interpolation inequalities
by: Brigati, Giovanni, et al.
Published: (2024-02-01)