Some notes on complex symmetric operators

In this paper we show that every conjugation $C$ on the Hardy-Hilbert space $H^{2}$ is of type $C=T^{*}\mathcal{J} T$, where $T$ is an unitary operator and $\mathcal{J} f\left(z\right)=\overline{f\left(\overline{z}\right)}$ with $f\in H^{2}$. Moreover, we prove some relations of complex symmetry bet...

Full description

Saved in:
Bibliographic Details
Main Author: Marcos S. Ferreira
Format: Article
Language:English
Published: EJAAM 2021-12-01
Series:E-Journal of Analysis and Applied Mathematics
Subjects:
Online Access:https://ejaam.org/articles/2021/10.2478-ejaam-2021-0006.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823864876083183616
author Marcos S. Ferreira
author_facet Marcos S. Ferreira
author_sort Marcos S. Ferreira
collection DOAJ
description In this paper we show that every conjugation $C$ on the Hardy-Hilbert space $H^{2}$ is of type $C=T^{*}\mathcal{J} T$, where $T$ is an unitary operator and $\mathcal{J} f\left(z\right)=\overline{f\left(\overline{z}\right)}$ with $f\in H^{2}$. Moreover, we prove some relations of complex symmetry between the operators $T$ and $\left|T\right|$, where $T =U\left|T\right|$ is the polar decomposition of bounded operator $T\in\mathcal{L}\left(\mathcal{H}\right)$ on the separable Hilbert space $\mathcal{H}$.
format Article
id doaj-art-755e7d9e7219414ea05eaa006380e35a
institution Kabale University
issn 2544-9990
language English
publishDate 2021-12-01
publisher EJAAM
record_format Article
series E-Journal of Analysis and Applied Mathematics
spelling doaj-art-755e7d9e7219414ea05eaa006380e35a2025-02-08T18:35:22ZengEJAAME-Journal of Analysis and Applied Mathematics2544-99902021-12-01202110.2478/ejaam-2021-0006Some notes on complex symmetric operatorsMarcos S. Ferreira0Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrasilIn this paper we show that every conjugation $C$ on the Hardy-Hilbert space $H^{2}$ is of type $C=T^{*}\mathcal{J} T$, where $T$ is an unitary operator and $\mathcal{J} f\left(z\right)=\overline{f\left(\overline{z}\right)}$ with $f\in H^{2}$. Moreover, we prove some relations of complex symmetry between the operators $T$ and $\left|T\right|$, where $T =U\left|T\right|$ is the polar decomposition of bounded operator $T\in\mathcal{L}\left(\mathcal{H}\right)$ on the separable Hilbert space $\mathcal{H}$.https://ejaam.org/articles/2021/10.2478-ejaam-2021-0006.pdfhardy spacetoeplitz operatorcomplex symmetric operatoraluthge transform
spellingShingle Marcos S. Ferreira
Some notes on complex symmetric operators
E-Journal of Analysis and Applied Mathematics
hardy space
toeplitz operator
complex symmetric operator
aluthge transform
title Some notes on complex symmetric operators
title_full Some notes on complex symmetric operators
title_fullStr Some notes on complex symmetric operators
title_full_unstemmed Some notes on complex symmetric operators
title_short Some notes on complex symmetric operators
title_sort some notes on complex symmetric operators
topic hardy space
toeplitz operator
complex symmetric operator
aluthge transform
url https://ejaam.org/articles/2021/10.2478-ejaam-2021-0006.pdf
work_keys_str_mv AT marcossferreira somenotesoncomplexsymmetricoperators