Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices

We consider operators acting on a UMD Banach lattice $X$ that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator $-\frac{1}{2}\Delta + \frac{1}{2}|x|^{2} $ acting on $L^{2}(\mathbb{R}^{d})$. More precisely, we consider abstract harmonic o...

Full description

Saved in:
Bibliographic Details
Main Authors: van Neerven, Jan, Portal, Pierre, Sharma, Himani
Format: Article
Language:English
Published: Académie des sciences 2023-07-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.370/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206238785306624
author van Neerven, Jan
Portal, Pierre
Sharma, Himani
author_facet van Neerven, Jan
Portal, Pierre
Sharma, Himani
author_sort van Neerven, Jan
collection DOAJ
description We consider operators acting on a UMD Banach lattice $X$ that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator $-\frac{1}{2}\Delta + \frac{1}{2}|x|^{2} $ acting on $L^{2}(\mathbb{R}^{d})$. More precisely, we consider abstract harmonic oscillators of the form $\frac{1}{2} \sum _{j=1} ^{d}(A_{j}^{2}+B_{j}^{2})$ for tuples of operators $A=(A_{j})_{j=1} ^{d}$ and $B=(B_{k})_{k=1} ^{d}$, where $iA_j$ and $iB_k$ are assumed to generate $C_{0}$ groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical Hörmander spectral multiplier estimates for the harmonic oscillator $-\frac{1}{2}\Delta + \frac{1}{2}|x|^{2}$ on $L^{p}(\mathbb{R}^{d})$. This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann–Fock spaces. Our approach is based on a transference principle for the Schrödinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces $L^{2}(\mathbb{R}^{2d};X)$. This can be seen as a generalisation of the Stone–von Neumann theorem to UMD lattices $X$ that are not Hilbert spaces.
format Article
id doaj-art-77bdeb21f1734f0db659ed6498e6adce
institution Kabale University
issn 1778-3569
language English
publishDate 2023-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-77bdeb21f1734f0db659ed6498e6adce2025-02-07T11:08:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-07-01361G583584610.5802/crmath.37010.5802/crmath.370Spectral multiplier theorems for abstract harmonic oscillators on UMD latticesvan Neerven, Jan0Portal, Pierre1Sharma, Himani2Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The NetherlandsThe Australian National University, Mathematical Sciences Institute, Hanna Neumann Building, Ngunnawal and Ngambri Country, Canberra ACT 2601, AustraliaThe Australian National University, Mathematical Sciences Institute, Hanna Neumann Building, Ngunnawal and Ngambri Country, Canberra ACT 2601, Australia.We consider operators acting on a UMD Banach lattice $X$ that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator $-\frac{1}{2}\Delta + \frac{1}{2}|x|^{2} $ acting on $L^{2}(\mathbb{R}^{d})$. More precisely, we consider abstract harmonic oscillators of the form $\frac{1}{2} \sum _{j=1} ^{d}(A_{j}^{2}+B_{j}^{2})$ for tuples of operators $A=(A_{j})_{j=1} ^{d}$ and $B=(B_{k})_{k=1} ^{d}$, where $iA_j$ and $iB_k$ are assumed to generate $C_{0}$ groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical Hörmander spectral multiplier estimates for the harmonic oscillator $-\frac{1}{2}\Delta + \frac{1}{2}|x|^{2}$ on $L^{p}(\mathbb{R}^{d})$. This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann–Fock spaces. Our approach is based on a transference principle for the Schrödinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces $L^{2}(\mathbb{R}^{2d};X)$. This can be seen as a generalisation of the Stone–von Neumann theorem to UMD lattices $X$ that are not Hilbert spaces.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.370/spectral multipliersharmonic oscillatortwisted convolutionscanonical commutation relationsWeyl pseudo-differential calculusUMD spacestransference$H^\infty $-calculusHörmander calculus
spellingShingle van Neerven, Jan
Portal, Pierre
Sharma, Himani
Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
Comptes Rendus. Mathématique
spectral multipliers
harmonic oscillator
twisted convolutions
canonical commutation relations
Weyl pseudo-differential calculus
UMD spaces
transference
$H^\infty $-calculus
Hörmander calculus
title Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
title_full Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
title_fullStr Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
title_full_unstemmed Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
title_short Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices
title_sort spectral multiplier theorems for abstract harmonic oscillators on umd lattices
topic spectral multipliers
harmonic oscillator
twisted convolutions
canonical commutation relations
Weyl pseudo-differential calculus
UMD spaces
transference
$H^\infty $-calculus
Hörmander calculus
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.370/
work_keys_str_mv AT vanneervenjan spectralmultipliertheoremsforabstractharmonicoscillatorsonumdlattices
AT portalpierre spectralmultipliertheoremsforabstractharmonicoscillatorsonumdlattices
AT sharmahimani spectralmultipliertheoremsforabstractharmonicoscillatorsonumdlattices