Non-oscillatory central schemes for the Saint-Venant system

The research aims to develop a well-balanced numerical method for solving the shallow water equations, which account for the balance laws and the source term related to the seabed slope. The proposed method combines a Runge-Kutta scheme for accurate time integration and the natural continuous extens...

Full description

Saved in:
Bibliographic Details
Main Author: Rooholah Abedian
Format: Article
Language:English
Published: Amirkabir University of Technology 2025-02-01
Series:AUT Journal of Mathematics and Computing
Subjects:
Online Access:https://ajmc.aut.ac.ir/article_5516_d393a688621463b8a5defc5cd88efbcd.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The research aims to develop a well-balanced numerical method for solving the shallow water equations, which account for the balance laws and the source term related to the seabed slope. The proposed method combines a Runge-Kutta scheme for accurate time integration and the natural continuous extension method for spatial discretization. To achieve high-order spatial accuracy, the method employs central non-staggered (CNS) reconstructions of the conservative variables and the water surface elevation. This is achieved through two key steps. The initial step involves determining the specific values of the flux derivative and the bed slope source term at individual points. The subsequent step entails integrating the source term spatially. Both of these steps are designed to preserve the C-property, which ensures the exact preservation of the quiescent flow solution. The method is verified using a variety of standard one-dimensional test cases, including smooth and discontinuous solutions, to demonstrate its accuracy and resolution properties.
ISSN:2783-2449
2783-2287