Enumeration of rooted 3-connected bipartite planar maps

We provide the first solution to the problem of counting rooted 3-connected bipartite planar maps. Our starting point is the enumeration of bicoloured planar maps according to the number of edges and monochromatic edges, following Bernardi and Bousquet-Mélou [J. Comb. Theory Ser. B, 101 (2011), 315–...

Full description

Saved in:
Bibliographic Details
Main Authors: Noy, Marc, Requilé, Clément, Rué, Juanjo
Format: Article
Language:English
Published: Académie des sciences 2024-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.548/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206241321811968
author Noy, Marc
Requilé, Clément
Rué, Juanjo
author_facet Noy, Marc
Requilé, Clément
Rué, Juanjo
author_sort Noy, Marc
collection DOAJ
description We provide the first solution to the problem of counting rooted 3-connected bipartite planar maps. Our starting point is the enumeration of bicoloured planar maps according to the number of edges and monochromatic edges, following Bernardi and Bousquet-Mélou [J. Comb. Theory Ser. B, 101 (2011), 315–377]. The decomposition of a map into 2- and 3-connected components allows us to obtain the generating functions of 2- and 3-connected bicoloured maps. Setting to zero the variable marking monochromatic edges we obtain the generating function of 3-connected bipartite maps, which is algebraic of degree 26. We deduce from it an asymptotic estimate for the number of 3-connected bipartite planar maps of the form $t\, n^{-5/2}\gamma ^n$, where $\gamma = \rho ^{-1} \approx 2.40958$ and $\rho \approx 0.41501$ is an algebraic number of degree $10$.
format Article
id doaj-art-7fb1d5ed6d6f4222961c16b57ae7a89a
institution Kabale University
issn 1778-3569
language English
publishDate 2024-03-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-7fb1d5ed6d6f4222961c16b57ae7a89a2025-02-07T11:16:25ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-03-01362G214315810.5802/crmath.54810.5802/crmath.548Enumeration of rooted 3-connected bipartite planar mapsNoy, Marc0Requilé, Clément1Rué, Juanjo2Centre de Recerca Matemàtica (CRM), Barcelona, Spain; Departament de Matemàtiques and Institut de Matemàtiques (IMTech) de la Universitat Politècnica de Catalunya (UPC), Barcelona, SpainDepartament de Matemàtiques and Institut de Matemàtiques (IMTech) de la Universitat Politècnica de Catalunya (UPC), Barcelona, SpainCentre de Recerca Matemàtica (CRM), Barcelona, Spain; Departament de Matemàtiques and Institut de Matemàtiques (IMTech) de la Universitat Politècnica de Catalunya (UPC), Barcelona, SpainWe provide the first solution to the problem of counting rooted 3-connected bipartite planar maps. Our starting point is the enumeration of bicoloured planar maps according to the number of edges and monochromatic edges, following Bernardi and Bousquet-Mélou [J. Comb. Theory Ser. B, 101 (2011), 315–377]. The decomposition of a map into 2- and 3-connected components allows us to obtain the generating functions of 2- and 3-connected bicoloured maps. Setting to zero the variable marking monochromatic edges we obtain the generating function of 3-connected bipartite maps, which is algebraic of degree 26. We deduce from it an asymptotic estimate for the number of 3-connected bipartite planar maps of the form $t\, n^{-5/2}\gamma ^n$, where $\gamma = \rho ^{-1} \approx 2.40958$ and $\rho \approx 0.41501$ is an algebraic number of degree $10$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.548/
spellingShingle Noy, Marc
Requilé, Clément
Rué, Juanjo
Enumeration of rooted 3-connected bipartite planar maps
Comptes Rendus. Mathématique
title Enumeration of rooted 3-connected bipartite planar maps
title_full Enumeration of rooted 3-connected bipartite planar maps
title_fullStr Enumeration of rooted 3-connected bipartite planar maps
title_full_unstemmed Enumeration of rooted 3-connected bipartite planar maps
title_short Enumeration of rooted 3-connected bipartite planar maps
title_sort enumeration of rooted 3 connected bipartite planar maps
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.548/
work_keys_str_mv AT noymarc enumerationofrooted3connectedbipartiteplanarmaps
AT requileclement enumerationofrooted3connectedbipartiteplanarmaps
AT ruejuanjo enumerationofrooted3connectedbipartiteplanarmaps